Skip to main content

MEMS Electrostatic Energy Harvesters with Nonlinear Springs

  • Chapter
  • First Online:
Advances in Energy Harvesting Methods

Abstract

Design of nonlinear proof mass suspensions is one among several possible strategies that can be adopted to enlarge the operating frequency range of energy harvesters. Emphasizing continuous mode operation, this chapter gives a brief overview of the working principles of electrostatic energy harvesters. We argue that nonlinear springs are particularly well suited to make nonlinear suspensions for MEMS electrostatic energy harvesters. We then discuss from a theoretical point of view how nonlinear springs will modify the vibration spectrum of the devices and what can be expected from them in terms of performance. Different nonlinear spring designs are presented together with recent experimental results on characterization of micromachined devices. With frequency sweeps or white-noise vibration, nonlinear devices have shown dramatic increases in bandwidth compared to their linear counterparts. Experiments with band-limited noise show that the use of nonlinear springs is a viable method to increase the harvester tolerance towards variations in vibration bandwidth and center frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burrow S, Clare L (2007) 2007 IEEE International electric machines drives conference, IEMDC ’07, vol. 1. Antalya, Turkey, pp. 715–720

    Google Scholar 

  2. Burrow SG, Clare LR, Carrella A, Barton D (2008) Proc SPIE 6928:692807

    Article  Google Scholar 

  3. Zhu D, Tudor MJ, Beeby SP (2010) Meas Sci Technol 21:022001

    Article  Google Scholar 

  4. Soliman MSM, Abdel-Rahman EM, El-Saadany EF, Mansour RR (2008) J Micromech Microeng 18(115021):11p

    Google Scholar 

  5. Blystad LC, Halvorsen E (2011) Microsyst Technol 17:505

    Article  Google Scholar 

  6. Matsumoto K, Saruwatari K, Suzuki Y (2011) In: PowerMEMS 2011, Seoul, The Republic of Korea, pp. 134–137

    Google Scholar 

  7. Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) J Microelectromech Syst 20:1131

    Article  Google Scholar 

  8. Marinkovic B, Koser H (2009) Appl Phys Lett 94:103505

    Article  Google Scholar 

  9. Marzencki M, Defosseux M, Basrour S (2009) J Microelectromech Syst 18:1444

    Article  Google Scholar 

  10. Tvedt LGW, Nguyen DS, Halvorsen E (2010) J Microelectromech Syst 19:305. DOI 10.1109/JMEMS.2009.2039017

    Article  Google Scholar 

  11. Stanton SC, McGehee CC, Mann BP (2009) Appl Phys Lett 95:174103

    Article  Google Scholar 

  12. Cottone F, Vocca H, Gammaitoni L (2009) Phys Rev Lett 102:080601

    Article  Google Scholar 

  13. Erturk A, Hoffmann J, Inman DJ (2009) Appl Phys Lett 94:254102

    Article  Google Scholar 

  14. Barton DAW, Burrow SG, Clare LR (2010) J Vib Acoust 132:021009

    Article  Google Scholar 

  15. Nguyen DS, Halvorsen E, Jensen GU, Vogl A (2010) J Micromech Microeng 20:125009. DOI 10.11088/0960-1317/20/12/125009

    Article  Google Scholar 

  16. Nguyen SD, Tran NHT, Halvorsen E, Paprotny I (2011) In: Power MEMS 2011, Seoul, Republic of Korea, pp. 126–129

    Google Scholar 

  17. Löhndorf M, Kvisterøy T, Westby E, Halvorsen E (2007) In: PowerMEMS 2007 Technical Digest, Freiburg, pp. 331–334

    Google Scholar 

  18. Westby ER, Halvorsen E (2011) IEEE/ASME Trans Mechatronics 17:995. DOI 10.1109/TMECH.2011.2151203

    Article  Google Scholar 

  19. Miller LM, Halvorsen E, Dong T, Wright PK (2011) J Micromech Microeng 21:045029.DOI 10.1088/0960-1317/21/4/045029

    Google Scholar 

  20. von Buren T, Mitcheson PD, Green TC, Yeatman EM, Holmes AS, Tröster G (2006) IEEE Sensor J 6:28

    Article  Google Scholar 

  21. Blystad LCJ, Halvorsen E, Husa S (2010) IEEE Trans Ultrason Ferroelectr Freq Contr 57:908

    Article  Google Scholar 

  22. Halvorsen E, Blystad LCJ, Husa S, Westby E (2007) In: International Conference on Perspective Technologies and Methods in MEMS Design, 2007. MEMSTECH 2007, pp. 117–122

    Google Scholar 

  23. Halvorsen E (2008) J Microelectromech Syst 17:1061

    Article  Google Scholar 

  24. van Kampen NG (2007) Stochastic processes in physics and chemistry. Elsevier, Amsterdam

    Google Scholar 

  25. Gardiner CW (2004) Handbook of stochastic methods, 3rd edn. Springer, Berlin-Heidelberg

    Google Scholar 

  26. Kloeden PE, Platen E (2010) Numerical solution of stochastic differential equations. Springer, Berlin-Heidelberg

    MATH  Google Scholar 

  27. Blystad LCJ, Halvorsen E (2011) Smart Mater Struct 20:025011

    Article  Google Scholar 

  28. Sebald G, Kuwano H, Guyomar D, Ducharne B (2011) Smart Mater Struct. 20:075022

    Article  Google Scholar 

  29. Bao MH (2000) Micro Mechanical transducers: pressure sensors, accelerometers, and gyroscopes. Elsevier B.V., Amsterdam

    Google Scholar 

  30. Roundy S, Wright PK, Rabaey J (2003) Comput Commun 26:1131

    Article  Google Scholar 

  31. Hoffmann D, Folkmer B, Manoli Y (2011) J Micromech Microeng 21:104002

    Article  Google Scholar 

  32. Bartsch U, Gaspar J, Paul O (2010) J Micromech Microeng 20:035016

    Article  Google Scholar 

  33. Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan A, Lang J (1999) In: ISLPED ’99: Proceedings of the 1999 international symposium on low power electronics and design. ACM, New York, pp. 48–53

    Book  Google Scholar 

  34. Mitcheson P, Sterken T, He C, Kiziroglou M, Yeatman E, Puers R (2008) Meas Contr UK 41:114

    Google Scholar 

  35. Yen BC, Lang JH (2006) IEEE Trans Circ Syst I 53:288

    Article  Google Scholar 

  36. Kuehne I, Frey A, Marinkovic D, Eckstein G, Seidel H (2008) Sensor Actuator A 142:263

    Article  Google Scholar 

  37. Ma W, Zhu R, Rufer L, Zohar Y, Wong M (2007) J Microelectromech Syst 16:29

    Article  Google Scholar 

  38. Li Y, Cheng Z, San H, Duo Y, Chen X (2010) In: 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems. NEMS 2010, pp. 78–83

    Google Scholar 

  39. Suzuki Y (2011) IEEJ Trans Electr Electron Eng 6:101

    Article  Google Scholar 

  40. Sessler GM (ed) (1999) Electrets, 3rd edn. Laplacian Press, California

    Google Scholar 

  41. Tsutsumino T, Suzuki Y, Kasagi N, Kashiwagi K, Morizawa Y (2006) In: PowerMEMS 2006 technical digest, Berkeley, USA, pp. 279–282

    Google Scholar 

  42. Sakane Y, Suzuki Y, Kasagi N (2008) J Micromech Microeng 18:104011

    Article  Google Scholar 

  43. Sterken T, Baert K, Puers R, Borghs G, Mertens R (2003) In: Proceedings pan pacific microelectronics symposium, Hawaii, pp. 27–34

    Google Scholar 

  44. Gracewski SM, Funkenbusch PD, Jia Z, Ross DS, Potter MD (2006) J Micromech Microeng 16:235

    Article  Google Scholar 

  45. Yamashita K, Honzumi M, Hagiwara K, Iguchi Y, Suzuki Y (2010) In: Proceedings of PowerMEMS 2010 oral presentations, Leuven, Belgium, pp. 165–168

    Google Scholar 

  46. Halvorsen E, Westby ER, Husa S, Vogl A, Østbø NP, Leonov V, Sterken T, Kvisterøy T (2009) In: The 15th international conference on solid-state sendors, actuators & microsystems, transducers 2009, Denver, Colorado, pp. 1381–1384

    Book  Google Scholar 

  47. Soliman M, Abdel-Rahman E, El-Saadany E, Mansour R (2009) J Microelectromech Syst 18:1288

    Article  Google Scholar 

  48. Le CP, Halvorsen E (2011) In: Proceedings of the 22nd micromechanics and microsystem technology europe workshop, Tønsberg, Norway

    Google Scholar 

  49. D’hulst R, Sterken T, Puers R, Deconinck G, Driesen J (2010) IEEE Trans Ind Electron 57:4170

    Article  Google Scholar 

  50. Peano F, Tambosso T (2005) J Microelectromech Syst 14:429

    Article  Google Scholar 

  51. Galayko D, Basset P (2011) IEEE Trans Circ Syst I 58:299

    Article  MathSciNet  Google Scholar 

  52. Mahmoud MAE, Abdel-Rahman EM, El-Saadany EF, Mansour RR (2010) Smart Mater Struct 19:025007

    Article  Google Scholar 

  53. Risken H (1996) The Fokker–Planck equation: methods of solutions and applications. Springer series in synergetics, vol. 18, 2nd edn. Springer, New York

    Google Scholar 

  54. Rao SS (2004) Mechanical vibrations, Pearson Education, New Jersey

    Google Scholar 

  55. Kovacic I, Brennan MJ (eds) (2011) The duffing equation. Wiley, Chichester, West Sussex

    MATH  Google Scholar 

  56. Thomson WT, Dahleh MD (1998) Theory of vibration with applications, 5th edn. Prentice Hall, Upper Saddle River, New Jersey

    Google Scholar 

  57. Senturia SD (2001) Microsystem design, Kluwer Academic Publishers, Norwell, Massachusetts

    Google Scholar 

  58. Voigtländer K, Risken H (1985) J Stat Phys 40:397

    Article  Google Scholar 

  59. Mitcheson PD, Yeatman EM, Rao GK, Holmes AS, Green TC (2008) Proc IEEE 96:1457

    Article  Google Scholar 

  60. Renno JM, Daqaq MF, Inman DJ (2009) J Sound Vib 320:386

    Article  Google Scholar 

  61. Ramlan R, Brennan M, Mace B, Kovacic I (2010) Nonlinear Dynam 59:545

    Article  MATH  Google Scholar 

  62. Scruggs J (2009) J Sound Vib 320:707

    Article  Google Scholar 

  63. Jutte CV, Kota S (2008) J Mech Des 130:081403

    Article  Google Scholar 

  64. Krylov S, Bernstein Y (2006) Sensor Actuator Phys 130–131:497

    Article  Google Scholar 

  65. Tran NHT, Nguyen SD, Halvorsen E (2011) In: Proceedings of the 22nd micromechanics and microsystem technology Europe workshop, Tønsberg, Norway

    Google Scholar 

  66. Tran NHT (2011) Design of nonlinear springs for MEMS vibration energy harvesting applications. Master’s thesis, Vestfold University College

    Google Scholar 

  67. Nguyen SD, Halvorsen E (2011) J Microelectromech Syst 20:1225. DOI 10.1109/JMEMS. 2011.2170824.

    Article  Google Scholar 

  68. Halvorsen E (2012) Fundamental issues in nonlinear wide-band vibration energy harvesting (unpublished), arXiv:1209.3184

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council of Norway under grant no. 191282.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einar Halvorsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Halvorsen, E., Nguyen, S.D. (2013). MEMS Electrostatic Energy Harvesters with Nonlinear Springs. In: Elvin, N., Erturk, A. (eds) Advances in Energy Harvesting Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5705-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5705-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5704-6

  • Online ISBN: 978-1-4614-5705-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics