Skip to main content

Materials and Devices for MEMS Piezoelectric Energy Harvesting

  • Chapter
  • First Online:
Advances in Energy Harvesting Methods

Abstract

Piezoelectric vibration energy harvesters (PVEHs) for microelectromechanical systems (MEMS) have received considerable attention as an enabling technology for self-powered wireless sensor networks. MEMS-PVEHs are particularly attractive because of the potential to deliver power required for sensor nodes and their ability to be integrated concurrently with the microfabrication of electronic circuits such as sensor nodes. This chapter consists of four subsections, starting with Sect. 17.1, where various piezoelectric materials commonly used for MEMS-scale PVEHs are reviewed. Typical device configurations of PVEH systems are introduced in Sect. 17.2, followed by analytical modeling of different configurations in Sect. 17.3 to link material characteristics to device performance: standard capacitor type electrodes for {3–1} mode of operation and interdigitated electrodes (IDTEs) for {3–3} mode of operation. In the last section, fabrication and characterization of MEMS-scale PVEHs in both of these modes are presented with model–experiment comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muralt P (2000) Ferroelectric thin films for micro-sensor and actuators: a review. J Micromech Microeng 10:136–146

    Article  Google Scholar 

  2. Trolier-Mckinstry S, Muralt P (2004) Thin film piezoelectric for MEMS. J Electroceram 12:7–17

    Article  Google Scholar 

  3. IEEE 1987 ANSI Standard 176–1987: IEEE Standard on Piezoelectricity

    Google Scholar 

  4. Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001

    Article  Google Scholar 

  5. Tadigadapa S, Mateti K (2004) Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas Sci Technol 20:092001

    Article  Google Scholar 

  6. Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21

    Article  Google Scholar 

  7. Funasaka T, Furuhata M, Hashimoto Y, Nakamura K (1998) Piezoelectric generator using a LiNbO3 plate with an inverted domain. Ultrasonics symposium, Sendai, pp 959–962

    Google Scholar 

  8. Setter N et al (2006) Ferroelectric thin films: review of materials, properties, and applications. J Appl Phys 100:051606

    Article  Google Scholar 

  9. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242

    Article  Google Scholar 

  10. Xu C, Wang S, Wang ZL (2009) Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J Am Chem Soc 131:5866–5872

    Article  Google Scholar 

  11. Lovinger AJ (1983) Ferroelectric polymers. Science 220:1115–1121

    Article  Google Scholar 

  12. Priya S (2007) Advanced in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:165–182

    Google Scholar 

  13. Sodano HA, Inman DJ, Park G (2004) A review of power harvesting from vibration using piezoelectric materials. Shock Vib Dig 36(3):197–205

    Article  Google Scholar 

  14. Sodano HA, Park G, Inman DJ (2004) An investigation into the performance of macro-fiber composites for sensing and structural vibration applications. Mech Syst Signal Process 18: 683–697

    Article  Google Scholar 

  15. Sodano HA, Park G, Leo DJ, Inman DJ (2004) Model of piezoelectric power harvesting beam. In: ASME international mechanical engineering congress and exposition, Washington, DC, 15–21 November, vol 40, p 2

    Google Scholar 

  16. Kim H et al (2009) Piezoelectric energy harvesting, chapter 1. In: Priya S, Inman DJ (eds) Energy harvesting technologies. Springer Science & Business Media, LLC, New York, NY

    Google Scholar 

  17. Ikeda T (1996) Fundamental of piezoelectricity. Oxford University Press, New York

    Google Scholar 

  18. Schwartz RW, Ballato J, Haertling GH (2004) Piezoelectric and electro-optic ceramics. In: Buchanan RC (ed) Ceramics materials for electronics. Dekker, New York

    Google Scholar 

  19. Xu Y (1991) Ferroelectric materials and their applications. North-Holland, Amsterdam

    Google Scholar 

  20. Gady WG (1946) Piezoelectricity. McGraw-Hill, New York

    Google Scholar 

  21. Setter N (2005) Electroceramics-based MEMS: fabrication-technology, and applications. In: Tuller HL (ed) Electronics materials: science and technology. Springer, New York

    Google Scholar 

  22. Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 13:R175–R195

    Article  Google Scholar 

  23. Kim M, Hoegen M, Dugundji J, Wardle BL (2010) Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Mater Struct 19:045023

    Article  Google Scholar 

  24. Jeon YB, Sood R, Jeong J-H, Kim S-G (2005) MEMS power generator with transverse mode thin film PZT. Sens Actuators A 122:16–22

    Article  Google Scholar 

  25. Shen D, Park J-H, Ajitsaria J, Choe S-Y, Howard CW III, Kim D-J (2008) The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18:055017

    Article  Google Scholar 

  26. du Toit NE (2005) Modeling and design of a MEMS piezoelectric vibration energy harvester. Master’s thesis, Massachusetts Institute of Technology

    Google Scholar 

  27. Mo C, Kim S, Clark WW (2009) Theoretical analysis of energy harvesting performance for unimorph piezoelectric benders with interdigitated electrodes. Smart Mater Struct 18:055017

    Article  Google Scholar 

  28. duToit NE, Wardle BL (2007) Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA J 45:1126–1137

    Article  Google Scholar 

  29. Myers R, Vickers M, Kim H, Priya S (2007) Small scale windmill. Appl Phys Lett 90:3

    Article  Google Scholar 

  30. Fang HB, Liu JQ, Xu ZY, Dong L, Wang L, Chen D, Cai BC, Liu Y (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37:1280–1284

    Article  Google Scholar 

  31. Marzencki M, Charlot B, Basrour S, Colin M, Valbin L (2005) Design and fabrication of piezoelectric micro power generators for autonomous microsystems. DTIP’ 05 symposium design, test, integration & packaging of MEMS/MOEMS, Montreux, Switzerland, pp 299–302

    Google Scholar 

  32. Ajitsaria J, Cho S-Y, Shen D, Kim DJ (2007) Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater Struct 16:447–454

    Article  Google Scholar 

  33. Shena D, Park J-H, Noh JH, Choe S-Y, Kim S-H, Wikle HC III, Kim D-J (2009) Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens Actuators A 154:103–108

    Article  Google Scholar 

  34. Muralt P, Polcawich RG, Trolier-McKinstry S (2009) Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull 34:658–664

    Article  Google Scholar 

  35. Ledermann N, Muralt P, Baborowski J, Gentil S, Mukati K, Cantoni M, Seifert A, Setter N (2003) {100}-Textured, piezoelectric Pb(Zrx, Ti1-x)O3 thin films for MEMS: integration, deposition and properties. Sens Actuators A 105:162–170

    Article  Google Scholar 

  36. Lefki K, Dormans M (1994) Measurement of piezoelectric coefficients of ferroelectric thin films. J Appl Phys 76(3):1

    Article  Google Scholar 

  37. Liu D, Yoon SH, Zhou B, Prorok BC, Kim DJ (2009) Investigation of the crystalline orientations and substrates dependence on mechanical properties of PZT thin films by nanoindentation. Materials research society symposium proceeding, vol 1129

    Google Scholar 

  38. Mracek AM (2004) Towards an embeddable structural health monitoring sensor: design and optimization of MEMS piezoelectric vibration energy harvesters. Master’s thesis, Massachusetts Institute of Technology

    Google Scholar 

Download references

Part of this work (S. Hong) was carried out at Argonne National Laboratory (ANL), a US DOE Science Laboratory operated under contract no. DE-AC02-06CH11357 by UChicago Argonne, LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miso Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, M., Kim, SH., Hong, S. (2013). Materials and Devices for MEMS Piezoelectric Energy Harvesting. In: Elvin, N., Erturk, A. (eds) Advances in Energy Harvesting Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5705-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5705-3_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5704-6

  • Online ISBN: 978-1-4614-5705-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics