Skip to main content

Asynchronous Event-Based Self-Powering, Computation, and Data Logging

  • Chapter
  • First Online:
Advances in Energy Harvesting Methods

Abstract

Asynchronous self-powering refers to an energy scavenging approach where energy for sensing, computation, and nonvolatile storage is harvested directly from the signal being sensed. The approach eliminates the need for energy regulation modules, energy storage, analog-to-digital converters, microcontrollers, and random-access memory, all of which are commonly used in traditional energy scavenging sensors. In this chapter, we describe the fundamental principles of asynchronous self-powering by considering a case study of a sensor designed for structural health monitoring (SHM) applications. In this regard, we describe how the device physics governing the operation of nonvolatile analog memory could be combined with the physics of piezoelectric and electrostatic transducers such that the resulting circuits can operate at fundamental limits of self-powering. For the sake of completeness, we describe an architecture of a system-on-chip that uses ambient strain variations to asynchronously self-power and compute signal-level and signal-velocity statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 με (called micro-strain) refers to a deformation of 10 − 6 m for the dimension of the structure being 1 m.

References

  1. Lynch JP, Loh KJ (2006) A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib Digest 38(2):91–128

    Article  Google Scholar 

  2. Sazonov E, Li H, Curry D, Pillay P (2009) Self-powered sensors for monitoring of highway bridges. IEEE Sensor J 9(11):1422–1429

    Article  Google Scholar 

  3. Lajnef N, Elvin N, Chakrabartty S (2008) A piezo-powered floating-gate sensor array for long-term fatigue monitoring in biomechanical implants. IEEE Trans Biomed Circ Syst 2(3):164–172

    Article  Google Scholar 

  4. Chen H, Liu M, Hao W, Chen Y, Jia C, Zhang C, Wang Z (2009) Low-power circuits for the bidirectional wireless monitoring system of the orthopedic implants. IEEE Trans Biomed Circ Syst 3(6):437–443

    Article  Google Scholar 

  5. Platt SR, Farritor S, Garvin K, Haider H (2005) The use of piezoelectric ceramics for electric power generation within orthopedic implants. IEEE/ASME Trans Mechatron 10(4):455–461

    Article  Google Scholar 

  6. Ramadass YK, Chandrakasan AP (2011) A battery-less thermoelectric energy harvesting interface circuit with 35mV startup voltage. IEEE J Solid State Circ 46(1):333–341

    Article  Google Scholar 

  7. Amirtharajah R, Chandrakasan AP (1998) Self-powered signal processing using vibration-based power generation. IEEE J Solid State Circ 33(5):687–695

    Article  Google Scholar 

  8. Alippi C, Galperti C (2008) An adaptive system for optimal solar energy harvesting in wireless sensor network nodes. IEEE Trans Circ Syst I Regular Papers 55(6):1742–1750

    Article  MathSciNet  Google Scholar 

  9. Yoo J, Yan L, Lee S, Kim Y, Yoo H-J (2010) A 5.2mW self-configured wearable body sensor network controller and a 12μW wirelessly powered sensor for a continuous health monitoring system. IEEE J Solid State Circ 45(1):178–188

    Article  Google Scholar 

  10. Elvin N, Elvin A, Choi DH (2003) A self-powered damage detection sensor. J Strain Anal Eng Design 38(2):115–125

    Article  Google Scholar 

  11. Hanson S, Mingoo S, Yu-Shiang L, Yoong FZ, Daeyeon K, Yoonmyung L, Liu N, Sylvester D, Blaauw D (2009) A low-voltage processor for sensing applications with picowatt standby mode. IEEE J Solid State Circ 44(4):1145–1155

    Article  Google Scholar 

  12. Amirtharajah R, Chandrakasan A (2004) A micropower programmable dsp using approximate signal processing based on distributed arithmetic. IEEE J Solid State Circ 39(2):337–347

    Article  Google Scholar 

  13. Elvin N, Lajnef N, Elvin A (2006) Feasibility of structural monitoring with vibration powered sensors. Smart Mater Struct 15(4):977–986

    Article  Google Scholar 

  14. Nakamoto H, Yamazaki D, Yamamoto T, Kurata H, Yamada S, Mukaida K, Ninomiya T, Ohkawa T, Masui S, Gotoh K (2006) A passive UHF RFID tag LSI with 36.6% efficiency CMOS-only rectifier and current-mode demodulator in 0.35μm FeRAM technology. In: Proceedings of IEEE International Solid-State Circuits Conference-Digest of Technical Papers, Feb 2006, pp. 1201

    Google Scholar 

  15. Huang C, Chakrabartty S (2012) An asynchronous analog self-powered sensor-data-logger with a 13.56MHz RF programming interface. IEEE J Solid State Circ DOI:10.1109/JSSC.2011.2172159

    Google Scholar 

  16. Huang C, Lajnef N, Chakrabartty S (2010) Calibration and characterization of self-powered floating-gate usage monitor with single electron per second operational limit. IEEE Trans Circ Syst I Regular Papers 57(3):556–567

    Article  MathSciNet  Google Scholar 

  17. Dorio C, Hasler P, Minch B, Mead CA (1996) A single-transistor silicon synapse. IEEE Trans Electron Dev 43(11):1972–1980

    Article  Google Scholar 

  18. Ozalevli E, Hasler PE (2008) Tunable highly linear floating-gate CMOS resistor using common-mode linearization technique. IEEE Trans Circ Syst I Regular Papers 55(4):999–1010

    Article  MathSciNet  Google Scholar 

  19. Chakrabartty S, Cauwenberghs G (2007) Sub-microwatt analog VLSI trainable pattern classifier. IEEE J Solid State Circ 42(5):1169–1179

    Article  Google Scholar 

  20. Hasler P (1997) Foundations of learning in analog VLSI. Ph.D. dissertation, Department of Computation and Neural Systems, California Institute of Technology, Pasadena, CA

    Google Scholar 

  21. Vittoz E, Fellrath J (1977) CMOS analog integrated circuits based on weak inversion operation. IEEE J Solid State Circ 12(3):224–231

    Article  Google Scholar 

  22. Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge solid state science series. Cambridge University Press, Cambridge. ISBN-10: 0521578477

    Book  Google Scholar 

  23. Brown J Jr (1967) Generalized form of prices theorem and its converse. IEEE Trans Inform Theor 13(1):27–30

    Article  MATH  Google Scholar 

  24. TRF7960 Datasheet, Multi-standard fully integrated 13.56-MHz RFID AFE and data framing reader system, Texas Instrument, http://focus.ti.com/docs/prod/folders/print/trf7960.html

  25. Ferrari M, Ferrari V, Marioli D, Taroni A (2006) Modeling, fabrication and performance measurements of a piezoelectric energy converter for power harvesting in autonomous microsystems. Instrum Meas 55:2096–2101

    Article  Google Scholar 

  26. Mateu L, Moll F (2007) System-level simulation of a self-powered sensor with piezoelectric energy harvesting. Sensor Tech Appl, 399–404

    Google Scholar 

  27. Huang C, Sarkar P, Chakrabartty S (2011) rail-to-rail hot-electron injection programming of floating-gate voltage bias generators at a resolution of 13 bits. IEEE J Solid State Circ 46(11). DOI:10.1109/JSSC.2011.2167390

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by a research grant from the National Science Foundation (NSF), CMMI: 0700632, CAREER: 0954752, AIR:1127606, and by a contract from the Federal Highway Administration (FHWA), contract no: DTFH61-08-C-00015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Chakrabartty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chakrabartty, S. (2013). Asynchronous Event-Based Self-Powering, Computation, and Data Logging. In: Elvin, N., Erturk, A. (eds) Advances in Energy Harvesting Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5705-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5705-3_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5704-6

  • Online ISBN: 978-1-4614-5705-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics