Skip to main content

Power Conditioning Techniques for Energy Harvesting

  • Chapter
  • First Online:
Advances in Energy Harvesting Methods

Abstract

Over the last 10 years the most dramatic progress in energy harvesting has concerned the power conditioning sub-system. Whilst the mechanical components and transducers have seen incremental improvements, often related to modelling and understanding behaviour, the power conditioning systems have undergone revolution: from simple peak rectifiers to complex topologies and control, with several examples integrated onto ICs. In this chapter the basic interactions of the dynamic mechanical and electrical system are described, and it is suggested that analysing the power factor at the input to the power conditioning system can be a useful tool in understanding behaviour. The benefits of electrical tuning are then described: this is an important topic, which the authors believe will be a key direction of future research. The chapter also gives an overview of published circuits for electromagnetic, piezoelectric and electrostatic transduction mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cammarano A, Burrow SG, Barton DAW, Carrella A, Clare LR (2010) Tuning a resonant energy harvester using a generalized electrical load. J Smart Mater Struct 19:055003. doi:10.1088/0964-1726/19/5/055003

    Article  Google Scholar 

  2. Wong KH, Toh TT, Mitcheson PD, Holmes AS, Burrow SG (2012) Tuning the resonant frequency and damping of an energy harvester using power electronics. IEEE Trans Circuits Syst II Express Briefs 59(1). doi:10.1109/TCSII.2011.2173966

  3. Gardino P, Brennan MJ (2002) On the origins and development of mobility and impedance methods in structural dynamics. J Sound Vib 249(3):557–573

    Article  Google Scholar 

  4. Middlebrook RD (1978) Design techniques for preventing input-filter oscillations in switched-mode regulators. In: Powercon proceedings, pp A3.1–A3.16

    Google Scholar 

  5. Burrow SG, Clare LR (2009) Open-loop power conditioning for vibration energy harvesting. Electron Lett 45(19):999–1000

    Article  Google Scholar 

  6. Waidelich DL (1941) Diode rectifying circuits with capacitance filters. Trans AIEE 61:1161

    Google Scholar 

  7. Sen PC (2008) Power electronics. Tata McGraw-Hill, New Delhi. ISBN -13:978-0-07-462400-5

    Google Scholar 

  8. Clare LR, Burrow SG (2008) Power conditioning for energy harvesting. Proc SPIE 6928:69280A

    Article  Google Scholar 

  9. Ottman GK, Hofmann HF, Bhatt AC, Lesieutre GA (2002) Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron 17(5): 669–676

    Article  Google Scholar 

  10. Tabesh A, Fréchette LG (2010) A low-power stand-alone adaptive circuit for harvesting energy from a piezoelectric micropower generator. IEEE Trans Industr Electron 57:840–849

    Article  Google Scholar 

  11. Carlson EJ, Strunz K, Otis BP (2010) A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J Solid State Circuits 45:741–750

    Article  Google Scholar 

  12. Lefeuvre E, Audigier D, Richard C, Guyomar D (2007) Buck-boost converter for sensorless power optimization of piezoelectric energy harvester. IEEE Trans Power Electron 22: 2018–2025

    Article  Google Scholar 

  13. Ramadass YK, Chandrakasan AP (2010) An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J Solid State Circuits 45:189–204

    Article  Google Scholar 

  14. Mitcheson PD, Green TC, Yeatman EM (2007) Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers. Microsyst Technol 13:1629–1635

    Article  Google Scholar 

  15. Dwari S, Dayal R, Parsa L (2008) A Novel direct AC/DC converter for efficient low voltage energy harvesting. 34th Annual IEEE Conference of Industrial Electronics (IECON), pp 484–488

    Google Scholar 

  16. Lee H, Mok PKT (2007) An SC voltage doubler with pseudo-continuous output regulation using a three-stage switchable opamp. IEEE J Solid State Circuits 42:1216–1229

    Article  Google Scholar 

  17. Lam YH, Ki WH, Tsui CY (2006) An integrated 1.8 V to 3.3 V regulated voltage doubler using active diodes and dual-loop voltage follower for switch-capacitive load. Symposium on VLSI circuits digest of technical papers, pp 85–86

    Google Scholar 

  18. Richelli A, Colalongo L, Tonoli S, Kovacs-Vajna ZM (2009) A 0.2−1.2 V DC/DC boost converter for power harvesting applications. IEEE Trans Power Electron 24:1541–1546

    Article  Google Scholar 

  19. Salmon JC (1993) Circuit topologies for single-phase voltage-doubler boost rectifiers. IEEE Trans Power Electron 8:521–529

    Article  Google Scholar 

  20. Dwari S, Parsa L (2008) Efficient low voltage direct AC/DC converters for self-powered wireless sensor nodes and mobile electronics. 30th International Telecommunications Energy Conference (INTELEC), pp 1–7

    Google Scholar 

  21. Dwari S, Parsa L (2010) An efficient AC–DC step-up converter for low-voltage energy harvesting. IEEE Trans Power Electron 25:2188–2199

    Article  Google Scholar 

  22. Kim J, Ryu YH, Choi SB (2000) New shunting parameter tuning method for piezoelectric damping based on measured electrical impedance. Smart Mater Struct 9:868–877

    Article  Google Scholar 

  23. Davis CL, Lesieutre GA (2000) An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness. J Sound Vib 232:601–617

    Article  Google Scholar 

  24. Toh TT et al (2011) Electronic resonant frequency tuning of a marine energy harvester. Proceedings of PowerMEMS, Seoul, Korea

    Google Scholar 

  25. Guyomar D, Badel A, Lefeuvre E, Richard C (2005) Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans Ultrason Ferroelectr Freq Control 52:584–595

    Article  Google Scholar 

  26. Dicken J, Mitcheson PD, Stoianov I, Yeatman EM (2012) Power-extraction circuits for piezoelectric energy harvesters in miniature and low-power applications. IEEE Trans Power Electron 27:4514–4529

    Article  Google Scholar 

  27. Dicken J, Mitcheson P, Elliot A, Yeatman E (2011) Single-supply pre-biasing circuit for low-amplitude energy harvesting applications. Proceedings of PowerMEMS 2011, Soeul, Korea

    Google Scholar 

  28. Meninger S et al (2001) Vibration-to-electric energy conversion. IEEE Trans VLSI Syst 9: 64–76

    Article  Google Scholar 

  29. Halvorsen E et al (2009) An electrostatic energy harvester with electret bias. Solid-state sensors, actuators and microsystems conference. TRANSDUCERS 2009. International, pp 1381–1384

    Google Scholar 

  30. Mitcheson PD et al (2004) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators A Phys 115:523–529

    Article  Google Scholar 

  31. Choi D et al (2010) Electrostatic energy harvester for low-frequency vibration by human physical motions using liquid. Proceedings of PowerMEMS, Belgium, pp 119–122

    Google Scholar 

  32. Mitcheson PD, Sterken T, He C, Kiziroglou M, Yeatman EM, Puers R (2008) Electrostatic microgenerators. Meas Control 41:114–119

    Google Scholar 

  33. Mitcheson PD, Green TC (2012) Maximum effectiveness of electrostatic energy harvesters when coupled to interface circuits. IEEE Trans Circuits Syst 1 Regul Pap 1–14. ISSN: 1549-8328

    Google Scholar 

  34. Stark BH, Mitcheson PD, Miao P, Green TC, Yeatman EM, Holmes AS (2006) Converter circuit design, semiconductor device selection and analysis of parasitics for micropower electrostatic generators. IEEE Trans Power Electron 21:27–37

    Article  Google Scholar 

  35. Suzuki Y (2011) Recent progress in MEMS electret generator for energy harvesting. IEEJ Trans Electr Electron Eng 6:101–111

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Burrow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burrow, S.G., Mitcheson, P.D., Stark, B.H. (2013). Power Conditioning Techniques for Energy Harvesting. In: Elvin, N., Erturk, A. (eds) Advances in Energy Harvesting Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5705-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5705-3_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5704-6

  • Online ISBN: 978-1-4614-5705-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics