Skip to main content

Introduction and Methods of Mechanical Energy Harvesting

  • Chapter
  • First Online:

Abstract

The harvesting of various forms of mechanical energy, ranging from kinetic and surface strain energy to flow-induced aeroelastic and hydroelastic vibrations, has been investigated extensively over the last decade. The goal of this book is to cover the state-of-the-art research advances in energy harvesting with a focus on different transduction mechanisms and forms of mechanical excitation. The following chapters include various examples of energy scavenging using piezoelectric transduction, electromagnetic induction, electrostatic transduction, as well as electroactive polymer harvesting. The aim of this first chapter is to provide a brief introduction to the literature and fundamentals of energy harvesting methods discussed through this volume along with an outline of the present book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A bimorph is a configuration that uses an elastic substructure sandwiched between two thickness-poled piezoelectric layers; a unimorph (not discussed here) is composed of a single thickness-poled piezoelectric layer attached to an elastic substructure.

  2. 2.

    Electromechanical coupling of a piezoelectric energy harvester depends not only on the amount of the piezoelectric material used but also on the structural design of the harvester (such as the location of the piezoelectric material on the cantilever and the way it is bonded to its substrate).

References

  1. Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic, Boston, MA

    Book  Google Scholar 

  2. Priya S, Inman DJ (2009) Energy harvesting technologies. Springer, New York

    Book  Google Scholar 

  3. Beeby S, White N (2010) Energy harvesting for autonomous systems. Artech House Publishers, Boston, MA

    Google Scholar 

  4. Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, Chichester

    Book  Google Scholar 

  5. Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1142

    Article  Google Scholar 

  6. Dutoit NE, Wardle BL (2006) Performance of microfabricated piezoelectric vibration energy harvesters. Integr Ferroelectr 83:13–32

    Article  Google Scholar 

  7. Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18:025009

    Google Scholar 

  8. Williams CB, Yates RB (1996) Analysis of a micro-electric generator for microsystems. Sensors Actuators A Phys 52:8–11

    Article  Google Scholar 

  9. Amirtharajah R, Chandrakasan AP (1998) Self-powered signal processing using SPIE vibration-based power generation. IEEE J Solid State Circuits 33:687–695

    Article  Google Scholar 

  10. Glynne-Jones P, Tudor MJ, Beeby SP, White NM (2004) An electromagnetic, vibration-powered generator for intelligent sensor systems. Sens Actuators A Phys 110:344–349

    Article  Google Scholar 

  11. Elvin NG, Elvin AA (2011) An experimentally validated electromagnetic energy harvester. J Sound Vib 330:2314–2324

    Article  Google Scholar 

  12. Meninger S, Mur-Miranda JO, Amirtharajah R, Chandrakasan A, Lang JH (2001) Vibration-to-electric energy conversion. IEEE Trans VLSI Syst 9:64–76

    Article  Google Scholar 

  13. Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144

    Article  Google Scholar 

  14. Mitcheson PD, Miao P, Stark BH, Yeatman E, Holmes A, Green T (2004) MEMS electrostatic micropower generator for low frequency operation. Sens Actuators A Phys 115:523–529

    Article  Google Scholar 

  15. Tvedt LGW, Nguyen DS, Halvorsen E (2010) Nonlinear behavior of an electrostatic energy harvester under wide-and narrowband excitation. J Microelectromech Syst 19:305–316

    Article  Google Scholar 

  16. Wang L, Yuan F (2008) Vibration energy harvesting by magnetostrictive material. Smart Mater Struct 17:045009

    Article  Google Scholar 

  17. Dong S, Zhai J, Li J, Viehland D, Priya S (2008) Multimodal system for harvesting magnetic and mechanical energy. Appl Phys Lett 93:103511

    Article  Google Scholar 

  18. Koh SJA, Zhao X, Suo Z (2009) Maximal energy that can be converted by a dielectric elastomer generator. Appl Phys Lett 94:262902

    Article  Google Scholar 

  19. Kornbluh RD, Pelrine R, Prahlad H, Wong-Foy A, Mccoy B, Kim S, Eckerle J, Low T (2011) From boots to buoys: promises and challenges of dielectric elastomer energy harvesting. Proceedings of SPIE 7976, 797605

    Google Scholar 

  20. Tiwari R, Kim KJ, Kim SM (2008) Ionic polymer-metal composite as energy harvesters. Smart Mater Struct 4:549–563

    Google Scholar 

  21. Brufau-Penella J, Puig-Vidal M, Giannone P, Graziani S, Strazzeri S (2008) Characterization of the harvesting capabilities of an ionic polymer metal composite device. Smart Mater Struct 17:015009

    Article  Google Scholar 

  22. Aureli M, Prince C, Porfiri M, Peterson SD (2010) Energy harvesting from base excitation of ionic polymer metal composites in fluid environments. Smart Mater Struct 19:015003

    Google Scholar 

  23. Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17:R175–R195

    Article  Google Scholar 

  24. Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21

    Article  Google Scholar 

  25. Priya S (2007) Advances in energy harvesting using low profile piezoelectric transducers. J Electroceram 19:167–184

    Article  Google Scholar 

  26. Hudak NS, Amatucci GG (2008) Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J Appl Phys 103:101301

    Article  Google Scholar 

  27. Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices – a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:043001

    Google Scholar 

  28. Choi WJ, Jeon Y, Jeong JH, Sood R, Kim SG (2006) Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J Electroceram 17:543–548

    Article  Google Scholar 

  29. Fang HB, Liu JQ, Xu ZY, Dong L, Wang L, Chen D, Cai BC, Liu Y (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37:1280–1284

    Article  Google Scholar 

  30. Kulah H, Najafi, K (2004) An electromagnetic micro power generator for low-frequency environmental vibrations. IEEE 237–240

    Google Scholar 

  31. Koukharenko E, Beeby S, Tudor M, White N, O’Donnell T, Saha C, Kulkarni S, Roy S (2006) Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Microsyst Technol 12:1071–1077

    Article  Google Scholar 

  32. Torres EO, Rincon-Mora GA (2006) Electrostatic energy harvester and li-ion charger circuit for micro-scale applications. IEEE 65–69

    Google Scholar 

  33. Lesieutre GA, Ottman GK, Hofmann HF (2004) Damping as a result of piezoelectric energy harvesting. J Sound Vib 269:991–1001

    Article  Google Scholar 

  34. Jeon Y, Sood R, Jeong J, Kim SG (2005) MEMS power generator with transverse mode thin film PZT. Sens Actuators A Physical 122:16–22

    Article  Google Scholar 

  35. Ottman GK, Hofmann HF, Bhatt AC, Lesieutre GA (2002) Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron 17:669–676

    Article  Google Scholar 

  36. Ottman GK, Hofmann HF, Lesieutre GA (2003) Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Trans Power Electron 18:696–703

    Article  Google Scholar 

  37. Shu Y, Lien I (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Mater Struct 15:1499

    Article  Google Scholar 

  38. Leo DJ (2007) Engineering analysis of smart material systems. Wiley, Hoboken, NJ

    Book  Google Scholar 

  39. Sadeghipour K, Salomon R, Neogi S (1992) Development of a novel electrochemically active membrane and ‘smart’ material based vibration sensor/damper. Smart Mater Struct 1:172

    Article  Google Scholar 

  40. Shahinpoor M, Bar-Cohen Y, Simpson J, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart Mater Struct 7:R15

    Article  Google Scholar 

  41. Farinholt KM, Pedrazas NA, Schluneker DM, Burt DW, Farrar CR (2009) An energy harvesting comparison of piezoelectric and ionically conductive polymers. J Intell Mater Syst Struct 20:633–642

    Article  Google Scholar 

  42. Giacomello A, Porfiri M (2011) Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites. J Appl Phys 109:084903

    Article  Google Scholar 

  43. Cottone F, Vocca H, Gammaitoni L (2009) Nonlinear energy harvesting. Phys Rev Lett 102:080601

    Article  Google Scholar 

  44. Erturk A, Hoffmann J, Inman DJ (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett 94:254102

    Google Scholar 

  45. Stanton SC, McGehee CC, Mann BP (2010) Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D 239:640–653

    Article  MATH  Google Scholar 

  46. Arrieta AF, Hagedorn P, Erturk A, Inman DJ (2010) A piezoelectric bistable plate for nonlinear broadband energy harvesting. Appl Phys Lett 97:104102

    Google Scholar 

  47. Masana R, Daqaq MF (2011) Relative performance of a vibratory energy harvester in mono-and bi-stable potentials. J Sound Vib 330:6036–6052

    Article  Google Scholar 

  48. Soliman M, Abdel-Rahman E, El-Saadany E, Mansour R (2008) A wideband vibration-based energy harvester. J Micromech Microeng 18:115021

    Article  Google Scholar 

  49. Blystad LCJ, Halvorsen E (2011) A piezoelectric energy harvester with a mechanical end stop on one side. Microsyst Technol 17:505–511

    Article  Google Scholar 

  50. Sousa VC, Anicezio MD, De Marqui C, Erturk A (2011) Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment. Smart Mater Struct 20:094007

    Google Scholar 

  51. Shenck NS, Paradiso JA (2001) Energy scavenging with shoe-mounted piezoelectrics. IEEE Micro 21:30–42

    Article  Google Scholar 

  52. Akaydin HD, Elvin N, Andreopoulos Y (2010) Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials. Exp Fluids 49:291–304

    Article  Google Scholar 

  53. Erturk A, Vieira WGR, De Marqui C, Inman DJ (2010) On the energy harvesting potential of piezoaeroelastic systems. Appl Phys Lett 96:184103

    Article  Google Scholar 

  54. Bryant M, Garcia E (2011) Modeling and testing of a novel aeroelastic flutter energy harvester. J Vib Acoust 133:011010

    Article  Google Scholar 

  55. Allen JJ, Smits AJ (2001) Energy harvesting eel. J Fluids Struct 15:629–640

    Article  Google Scholar 

  56. Pobering S, Ebermeyer S, Schwesinger N (2009) Generation of electrical energy using short piezoelectric cantilevers in flowing media. Proceedings of SPIE 7288, 728807

    Google Scholar 

  57. Myers R, Vickers M, Kim H, Priya S (2007) Small scale windmill. Appl Phys Lett 90:054106-054106-3

    Google Scholar 

  58. Xu F, Yuan F, Hu J, Qiu Y (2010) Design of a miniature wind turbine for powering wireless sensors. Proceedings of SPIE 7647, 764741

    Google Scholar 

  59. Liu F, Phipps A, Horowitz S, Ngo K, Cattafesta L, Nishida T, Sheplak M (2008) Acoustic energy harvesting using an electromechanical Helmholtz resonator. J Acoust Soc Am 123:1983

    Article  Google Scholar 

  60. Guyomar D, Badel A, Lefeuvre E, Richard C (2005) Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans Ultrason Ferroelectr Freq Control 52:584–595

    Article  Google Scholar 

  61. Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19:113–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niell Elvin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Elvin, N., Erturk, A. (2013). Introduction and Methods of Mechanical Energy Harvesting. In: Elvin, N., Erturk, A. (eds) Advances in Energy Harvesting Methods. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5705-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5705-3_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5704-6

  • Online ISBN: 978-1-4614-5705-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics