Skip to main content

Integrated Optical Confinement Geometry Device

  • Chapter
  • First Online:
Three Dimensional Solar Cells Based on Optical Confinement Geometries

Part of the book series: Springer Theses ((Springer Theses))

  • 969 Accesses

Abstract

In 2009, our group first looked for a large area fiber cell by bundling several fibers together (in Fig. 6.1). All fibers surrounded by Al cathode and ITO anodes at the top of fibers are connected to each other by silver paste. This idea inspired us to design more and better integrated OCGPVs, including a stamped fiber matrix on planar plastic substrate, domes or cones substrate and even ZnO nano-rod by near field approach, which will be introduced in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Gunes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107, 1324–1338 (2007)

    Article  Google Scholar 

  2. L.P. Yu, Y.Y. Liang, Z. Xu, J.B. Xia, S.T. Tsai, Y. Wu, G. Li, C. Ray, For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Adv. Mater. 22, E135 (2010)

    Article  Google Scholar 

  3. K. Lee, J.Y. Kim, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222–225 (2007)

    Article  ADS  Google Scholar 

  4. L.D. Wang, B. Li, B.N. Kang, P. Wang, Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells. Sol. Energ. Mat. Sol. C. 90, 549–573 (2006)

    Article  Google Scholar 

  5. Y. Li, W. Zhou, D. Xue, J. Liu, E.D. Peterson, W. Nie, D.L. Carroll, Origins of performance in fiber-based organic photovoltaics. Appl. Phys. Lett. 95, 203503 (2009)

    Article  ADS  Google Scholar 

  6. B. O’Connor, K.P. Pipe, M. Shtein, Fiber based organic photovoltaic devices. Appl. Phys. Lett. 92, 193306 (2008)

    Article  ADS  Google Scholar 

  7. J.W. Liu, M.A.G. Namboothiry, D.L. Carroll, Fiber-based architectures for organic photovoltaics. Appl. Phys. Lett. 90, 063501 (2007)

    Article  ADS  Google Scholar 

  8. R. Green, A. Morfa, A.J. Ferguson, N. Kopidakis, G. Rumbles, S.E. Shaheen, Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition. Appl. Phys. Lett. 92, 033301 (2008)

    Article  ADS  Google Scholar 

  9. D.Y. Kim, D.J. Vak, S.S. Kim, J. Jo, S.H. Oh, S.I. Na, J.W. Kim, Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Appl. Phys. Lett. 91, 81102 (2007)

    Article  Google Scholar 

  10. Y. Li, M. Wang, H. Huang, W. Nie, Q. Li, E.D. Peterson, R. Coffin, G. Fang, D.L. Carroll, Influence on open-circuit voltage by optical heterogeneity in three-dimensional organic photovoltaics. Phys. Rev. B. 84, 085206 (2011)

    Article  ADS  Google Scholar 

  11. Y. Li, E.D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, D.L. Carroll, Tube-based geometries for organic photovoltaics. Appl. Phys. Lett. 96, 243505 (2010)

    Article  ADS  Google Scholar 

  12. Y. Li, W. Nie, J. Liu, A. Partridge, D.L. Carroll, The optics of organic photovoltaics: Fiber- based devices. IEEE J. Sel. Top. Quant. Electron. 16, 1827–1837 (2010)

    Article  Google Scholar 

  13. Y. Li, E. D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, and D. L. Carroll, Tube-based geometries for organic photovoltaics. Appl. Phys. Lett. 96, 243505

    Google Scholar 

  14. M.P. de Jong, L.J. van IJzendoorn, M.J.A. de Voigt, Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 77, 2255–2257 (2000)

    Article  ADS  Google Scholar 

  15. M.N. Shan, S.S. Wang, Z.Q. Bian, J.P. Liu, Y.L. Zhao, Hybrid inverted organic photovoltaic cells based on nanoporous TiO2 films and organic small molecules. Sol. Energ. Mat. Sol. C. 93, 1613–1617 (2009)

    Article  Google Scholar 

  16. G.K. Mor, S. Kim, M. Paulose, O.K. Varghese, K. Shankar, J. Basham, C.A. Grimes, Visible to near-infrared light harvesting in TiO2 nanotube array-P3HT based heterojunction solar cells. Nano Lett. 9, 4250–4257 (2009)

    Article  ADS  Google Scholar 

  17. M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006)

    Article  ADS  Google Scholar 

  18. J.P. Liu, S.S. Wang, Z.Q. Bian, M.N. Shan, C.H. Huang, Inverted photovoltaic device based on ZnO and organic small molecule heterojunction. Chem. Phys. Lett. 470, 103–106 (2009)

    Article  ADS  Google Scholar 

  19. D.C. Olson, Y.J. Lee, M.S. White, N. Kopidakis, S.E. Shaheen, D.S. Ginley, J.A. Voigt, J.W.P. Hsu, Effect of ZnO processing on the photovoltage of ZnO/poly(3-hexylthiophene) solar cells. J. Phys. Chem. C 112, 9544–9547 (2008)

    Article  Google Scholar 

  20. D.C. Olson, S.E. Shaheen, R.T. Collins, D.S. Ginley, The effect of atmosphere and ZnO morphology on the performance of hybrid poly(3-hexylthiophene)/ZnO nanofiber photovoltaic devices. J. Phys. Chem. C 111, 16670–16678 (2007)

    Article  Google Scholar 

  21. V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88, 073058 (2006)

    Google Scholar 

  22. V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88, 73508 (2006)

    Article  Google Scholar 

  23. W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv. Mater. 16, 1009 (2004)

    Article  Google Scholar 

  24. M.J. Wang, G.J. Fang, L.Y. Yuan, H.H. Huang, Z.H. Sun, N.S. Liu, S.H. Xia, X.Z. Zhao, High optical switching speed and flexible electrochromic display based on WO3 nanoparticles with ZnO nanorod arrays’ supported electrode. Nanotechnology 20, 185304 (2009)

    Article  ADS  Google Scholar 

  25. D.W. Zhao, P. Liu, X.W. Sun, S.T. Tan, L. Ke, A.K.K. Kyaw, An inverted organic solar cell with an ultrathin Ca electron-transporting layer and MoO3 hole-transporting layer. Appl. Phys. Lett. 95, 153304 (2009)

    Article  ADS  Google Scholar 

  26. D.W. Zhao, S.T. Tan, L. Ke, P. Liu, A.K.K. Kyaw, X.W. Sun, G.Q. Lo, D.L. Kwong, Optimization of an inverted organic solar cell. Sol. Energ. Mat. Sol. C. 94, 985–991 (2010)

    Article  Google Scholar 

  27. A.K.K. Kyaw, X.W. Sun, C.Y. Jiang, G.Q. Lo, D.W. Zhao, D.L. Kwong, An inverted organic solar cell employing a sol–gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer. Appl. Phys. Lett. 93, 221107 (2008)

    Article  ADS  Google Scholar 

  28. K.I. Ishibashi, Y. Kimura, M. Niwano, An extensively valid and stable method for derivation of all parameters of a solar cell from a single current–voltage characteristic. J. Appl. Phys. 103, 094507 (2008)

    Article  ADS  Google Scholar 

  29. S.S. Hegedus, W.N. Shafarman, Thin-film solar cells: Device measurements and analysis. Prog. Photovoltaics 12, 155–176 (2004)

    Article  Google Scholar 

  30. K.M. Coakley, M.D. McGehee, Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533–4542 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, Y. (2013). Integrated Optical Confinement Geometry Device. In: Three Dimensional Solar Cells Based on Optical Confinement Geometries. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5699-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5699-5_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5698-8

  • Online ISBN: 978-1-4614-5699-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics