Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 984 Accesses

Abstract

The fiber-based solar cell is an example of a three dimensional photovoltaic architecture that uses the natural mode structure of optical fibers to enhance light capture (Reprinted from [1], Copyright (2011), with permission from Elsevier). In this work we explore the spectral response of such cells when the thickness of the absorbing layer is varied. We demonstrate two important consequences associated with this architecture. The first is that fiber-based devices generally require a thinner active layer than the analogous planar structure. This helps to avoid exciton recombination and reflection loss in the geometry. Secondly, the geometry exhibits a broader absorption and external quantum efficiency than its planar counterpart. We interpret this as being due to enhanced absorption of charge transfer excitons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Li, H. Huang, M. Wang, W. Nie, W. Huang, G. Fang, D.L. Carroll, Spectral response of fiber-based organic photovoltaics. Sol. Energ. Mat. Sol. C. 98, (2011). doi:10.1016/j.solmat.2011.10.033

    Google Scholar 

  2. Y. Li, M. Wang, H. Huang, W. Nie, Q. Li, E.D. Peterson, R. Coffin, G. Fang, D.L. Carroll, Influence on open-circuit voltage by optical heterogeneity in three-dimensional organic photovoltaics. Phys. Rev. B. 84, 085206 (2011)

    Article  ADS  Google Scholar 

  3. Y. Li, E.D. Peterson, H. Huang, M. Wang, D. Xue, W. Nie, W. Zhou, D.L. Carroll, Tube-based geometries for organic photovoltaics. Appl. Phys. Lett. 96, 243505 (2010)

    Article  ADS  Google Scholar 

  4. H. Huang, Y. Li, M. Wang, W. Nie, W. Zhou, E.D. Peterson, J. Liu, G. Fang, D.L. Carroll, Photovoltaic-thermal solar energy collectors based on optical tubes. Sol. Energy 85, 450–454 (2011)

    Article  Google Scholar 

  5. Y. Li, W. Nie, J. Liu, A. Partridge, D.L. Carroll, The optics of organic photovoltaics: Fiber- based devices. IEEE J. Sel. Top. Quant. Electron. 16, 1827–1837 (2010)

    Article  Google Scholar 

  6. B. O’Connor, K.P. Pipe, M. Shtein, Fiber based organic photovoltaic devices. Appl. Phys. Lett. 92, 193306 (2008)

    Article  ADS  Google Scholar 

  7. Y. Li, W. Zhou, D. Xue, J. Liu, E.D. Peterson, W. Nie, D.L. Carroll, Origins of performance in fiber-based organic photovoltaics. Appl. Phys. Lett. 95, 203503 (2009)

    Article  ADS  Google Scholar 

  8. S. Curran, J. Talla, S. Dias, J. Dewald, Microconcentrator photovoltaic cell (the m-C cell): Modeling the optimum method of capturing light in an organic fiber based photovoltaic cell. J. Appl. Phys. 104, 064305 (2008)

    Article  ADS  Google Scholar 

  9. D.W. Sievers, V. Shrotriya, Y. Yang, Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J. Appl. Phys. 100, 114509 (2006)

    Article  ADS  Google Scholar 

  10. L.A.A. Pettersson, L.S. Roman, O. Inganas, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999)

    Article  ADS  Google Scholar 

  11. R. Hausermann, E. Knapp, M. Moos, N.A. Reinke, T. Flatz, B. Ruhstaller, Coupled optoelectronic simulation of organic bulk-heterojunction solar cells: Parameter extraction and sensitivity analysis. J. Appl. Phys. 106, 104507 (2009)

    Article  ADS  Google Scholar 

  12. Open Photovoltaics Analysis Platform (OPVAP) by Yuan Li, USA. www.OPVAP.com

  13. H. Hoppe, N.S. Sariciftci, D. Meissner, Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells. Mol. Cryst. Liq. Cryst. 385, 233–239 (2002)

    Article  Google Scholar 

  14. F. Monestier, J.J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, C. Defranoux, Modeling the short-circuit current density of polymer solar cells based on P3HT: PCBM blend. Sol. Energ. Mat. Sol. C. 91, 405–410 (2007)

    Article  Google Scholar 

  15. Refractive Index. Info. database http://refractiveindex.info

  16. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, The effects of Al doping on the optical constants of ZnO thin films prepared by spray pyrolysis method. J. Mater. Sci-Mater. El. 19, 704–708 (2008)

    Article  Google Scholar 

  17. A. Pivrikas, G. Juscaronka, A.J. Mozer, M. Scharber, K. Arlauskas, N.S. Sariciftci, H. Stubb, R.O. Sterbacka, Bimolecular recombination coefficient as a sensitive testing parameter for low-mobility solar-cell materials. Phys. Rev. Lett. 94, 176806 (2005)

    Article  ADS  Google Scholar 

  18. F. Yang, M. Shtein, S.R. Forrest, Controlled growth of a molecular bulk heterojunction photovoltaic cell. Nat. Mater. 4, 37–41 (2005)

    Article  ADS  Google Scholar 

  19. G. Juska, K. Arlauskas, J. Stuchlik, R. Österbacka, Non-Langevin bimolecular recombination in low-mobility materials. J. Non-Cryst. Solids 352, 1167–1171 (2006)

    Article  ADS  Google Scholar 

  20. ASTM Standard G173, 2003e1, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface (ASTM International, West Conshohocken, PA, 2003). doi: 10.1520/G0173-03E01, www.astm.org

  21. X.J. Wang, E. Perzon, J.L. Delgado, P. de la Cruz, F.L. Zhang, F. Langa, M. Andersson, O. Inganas, Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Appl. Phys. Lett. 85, 5081–5083 (2004)

    Article  ADS  Google Scholar 

  22. X.Y. Zhu, Q. Yang, M. Muntwiler, Charge-transfer excitons at organic semiconductor surfaces and interfaces. Accounts. Chem. Res. 42, 1779–1787 (2009)

    Article  Google Scholar 

  23. Y. Chia-Ming, T. Pei-Yu, H. Sheng-Fu, L. Kuan-Chen, T. Shin-Rong, M. Hsin-Fei, S. Jow-Tsong, S. Ching-Fong, Infrared photocurrent response of charge-transfer exciton in polymer bulk heterojunction. Appl. Phys. Lett. 92, 083504 (2008)

    Article  ADS  Google Scholar 

  24. R.A. Marsh, J.M. Hodgkiss, S. Albert-Seifried, R.H. Friend, Effect of annealing on P3HT:PCBM charge transfer and nanoscale morphology probed by ultrafast spectroscopy. Nano Lett. 10, 923–930 (2010)

    Article  ADS  Google Scholar 

  25. I.W. Hwang, D. Moses, A.J. Heeger, Photoinduced carrier generation in P3HT/PCBM bulk heterojunction materials. J. Phys. Chem. C 112, 4350–4354 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, Y. (2013). Spectral Response. In: Three Dimensional Solar Cells Based on Optical Confinement Geometries. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5699-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5699-5_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5698-8

  • Online ISBN: 978-1-4614-5699-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics