Skip to main content

Reprogramming of DPSC to Induced Pluripotent Stem Cells

  • Chapter
  • First Online:
Dental Pulp Stem Cells

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM))

  • 1617 Accesses

Abstract

Generating a pluripotent cell in vitro by rewinding the internal clock of any somatic cell to an embryonic state and then forwarding its conversion into the desired differentiated cell fate represents a rational and ongoing approach in regenerative medicine (Yildirim 2012). There are available human tissues with no ethical or surgical concern, such as fat, blood, biopsy specimens, skin, plugged hair, and extracted teeth (Aasen et al. 2008; Sun et al. 2009; Ye et al. 2009; Yan et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasen T et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Abu-Remaileh M et al (2010) Oct-3/4 regulates stem cell identity and cell fate decisions by modulating Wnt/beta-catenin signalling. EMBO J 29(19):3236–3248

    Article  PubMed  CAS  Google Scholar 

  • Aoi T et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699–702

    Article  PubMed  CAS  Google Scholar 

  • Arakaki M et al (2012) Role of epithelial-stem cell interactions during dental cell differentiation. J Biol Chem 287(13):10590–10601

    Article  PubMed  CAS  Google Scholar 

  • Beltrao-Braga PI et al (2011) Feeder-free derivation of induced pluripotent stem cells from human immature dental pulp stem cells. Cell Transplant

    Article  PubMed  CAS  Google Scholar 

  • Blelloch R et al (2007) Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 1(3):245–247

    Article  PubMed  CAS  Google Scholar 

  • Brambrink T et al (2008) Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2(2):151–159

    Article  PubMed  CAS  Google Scholar 

  • Estrach S et al (2006) Jagged 1 is a beta-catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 133(22):4427–4438

    Article  PubMed  CAS  Google Scholar 

  • Gu K et al (1996) Expression of genes for bone morphogenetic proteins and receptors in human dental pulp. Arch Oral Biol 41(10):919–923

    Article  PubMed  CAS  Google Scholar 

  • Hemberger M et al (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10(8):526–537

    Article  PubMed  CAS  Google Scholar 

  • Huang GT et al (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    Article  PubMed  CAS  Google Scholar 

  • Huangfu D et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275

    Article  PubMed  CAS  Google Scholar 

  • James D et al (2005) TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development 132(6):1273–1282

    Article  PubMed  CAS  Google Scholar 

  • Karaoz E et al (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 136(4):455–473

    Article  PubMed  CAS  Google Scholar 

  • Kawamura T et al (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460(7259):1140–1144

    Article  PubMed  CAS  Google Scholar 

  • Kerkis I et al (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184(3–4):105–116

    Article  PubMed  CAS  Google Scholar 

  • Kim JY et al (2010a) Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A 16(10):3023–3031

    Article  PubMed  CAS  Google Scholar 

  • Kim K et al (2010b) Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res 89(8):842–847

    Article  PubMed  CAS  Google Scholar 

  • Li W et al (2009) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27(12):2992–3000

    Article  PubMed  CAS  Google Scholar 

  • Liu L et al (2011) Expression pattern of Oct-4, Sox2, and c-Myc in the primary culture of human dental pulp derived cells. J Endod 37(4):466–472

    Article  PubMed  Google Scholar 

  • Maherali N et al (2007) Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1(1):55–70

    Article  PubMed  CAS  Google Scholar 

  • Marchionni C et al (2009) Angiogenic potential of human dental pulp stromal (stem) cells.” Int J Immunopathol Pharmacol 22(3):699–706

    Article  PubMed  CAS  Google Scholar 

  • Marion RM et al (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460(7259):1149–1153

    Article  PubMed  CAS  Google Scholar 

  • Marson A et al (2008) Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell 3(2):132–135

    Article  PubMed  CAS  Google Scholar 

  • Meissner A et al (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181

    Article  PubMed  CAS  Google Scholar 

  • Nam H and G Lee (2009) Identification of novel epithelial stem cell-like cells in human deciduous dental pulp. Biochem Biophys Res Commun 386(1):135–139

    Article  PubMed  CAS  Google Scholar 

  • Papp B and K Plath (2011) Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Res 21(3):486–501

    Article  PubMed  CAS  Google Scholar 

  • Piattelli A et al (2000) bcl-2, p53, and MIB-1 in human adult dental pulp. J Endod 26(4):225–227

    Article  PubMed  CAS  Google Scholar 

  • Plath K Lowry WE (2011) Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet 12(4):253–265

    Article  PubMed  CAS  Google Scholar 

  • Saha K Jaenisch R (2009) Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5(6):584–595

    Article  PubMed  CAS  Google Scholar 

  • Sakai VT et al (2010) SHED differentiate into functional odontoblasts and endothelium. J Dent Res 89(8):791–796

    Article  PubMed  CAS  Google Scholar 

  • Sato N et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10(1):55–63

    Article  PubMed  CAS  Google Scholar 

  • Sloan AJ et al (1999) TGF-beta receptor expression in human odontoblasts and pulpal cells. Histochem J 31(8):565–569

    Article  PubMed  CAS  Google Scholar 

  • Sun N et al (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci U S A 106(37):15720–15725

    Article  PubMed  CAS  Google Scholar 

  • Tapia N Scholer HR (2010) p53 connects tumorigenesis and reprogramming to pluripotency. J Exp Med 207(10):2045–2048

    Article  PubMed  CAS  Google Scholar 

  • Thesleff I et al (1995) Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int J Dev Biol 39(1):35–50

    PubMed  CAS  Google Scholar 

  • Utikal J et al (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122(Pt 19):3502–3510

    Article  PubMed  CAS  Google Scholar 

  • Wen Y et al (2012) Application of induced pluripotent stem cells in generation of a tissue-engineered tooth-like structure. Tissue Eng Part A 18(15–16):1677–85

    Article  PubMed  CAS  Google Scholar 

  • Xu RH et al (2008) NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3(2):196–206

    Article  PubMed  CAS  Google Scholar 

  • Yan X et al (2010) iPS cells reprogrammed from human mesenchymal-like stem/progenitor cells of dental tissue origin. Stem Cells Dev 19(4):469–480

    Article  PubMed  CAS  Google Scholar 

  • Ye Z et al (2009) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114(27):5473–5480

    Article  PubMed  CAS  Google Scholar 

  • Yildirim S (2012) Induced pluripotent stem cells. Springer, New York

    Book  Google Scholar 

  • Yildirim S et al (2008) The role of dental pulp cells in resorption of deciduous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105(1):113–120

    Article  PubMed  CAS  Google Scholar 

  • Zhao X et al (2012) Characterization of alpha-smooth muscle actin positive cells during multilineage differentiation of dental pulp stem cells. Cell Prolif 45(3):259–265

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Author

About this chapter

Cite this chapter

Yildirim, S. (2013). Reprogramming of DPSC to Induced Pluripotent Stem Cells. In: Dental Pulp Stem Cells. SpringerBriefs in Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5687-2_7

Download citation

Publish with us

Policies and ethics