Skip to main content

Characterization of DPSC

  • Chapter
  • First Online:
Dental Pulp Stem Cells

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM))

  • 1708 Accesses

Abstract

Both SHED and DPSC have characteristic indistinguishable fibroblastic characteristics (Fig 6.1). They preserve plasticity during at least 25 passages, while maintaining the normal karyotype and the rate of expansion characteristic of stem cells (Kerkis et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe S et al (2010) Oral bacterial extracts facilitate early osteogenic/dentinogenic differentiation in human dental pulp-derived cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 109(1):149–154

    Google Scholar 

  • Arthur A et al (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26(7):1787–1795

    Google Scholar 

  • Arthur A et al (2009) Eph/ephrinB mediate dental pulp stem cell mobilization and function. J Dent Res 88(9):829–834

    Google Scholar 

  • Bakopoulou A et al (2011) Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcif Tissue Int 88(2):130–141

    Article  PubMed  CAS  Google Scholar 

  • Batouli S et al (2003) Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res 82(12):976–981

    Article  PubMed  CAS  Google Scholar 

  • Bayati V et al (2011) The evaluation of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells. Tissue Cell 43(6):359–366

    Google Scholar 

  • Bialek P et al (2004) A twist code determines the onset of osteoblast differentiation. Dev Cell 6(3):423–435

    Google Scholar 

  • Bonewald LF et al (2003) von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation. Calcif Tissue Int 72(5):537–547

    Google Scholar 

  • Cai X et al (2011) Uniaxial cyclic tensile stretch inhibits osteogenic and odontogenic differentiation of human dental pulp stem cells. J Tissue Eng Regen Med 5(5):347–353

    Article  PubMed  CAS  Google Scholar 

  • Casagrande L et al (2010) Dentin-derived BMP-2 and odontoblast differentiation. J Dent Res 89(6):603–608

    Google Scholar 

  • Chaussain C et al (2009) MMP2-cleavage of DMP1 generates a bioactive peptide promoting differentiation of dental pulp stem/progenitor cell. Eur Cell Mater 18:84–95

    Google Scholar 

  • Chen HC et al (2012) MicroRNA and messenger RNA analyses of mesenchymal stem cells derived from teeth and the Wharton jelly of umbilical cord. Stem Cells Dev 21(6):911–922

    Article  PubMed  CAS  Google Scholar 

  • Chen S et al (2009) Runx2, osx, and dspp in tooth development. J Dent Res 88(10):904–909

    Google Scholar 

  • Cordeiro MM et al (2008) Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod 34(8):962–969

    Article  PubMed  Google Scholar 

  • Couble ML et al (2000) Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif Tissue Int 66(2):129–138

    Article  PubMed  CAS  Google Scholar 

  • d’Aquino R et al (2007) Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes: a pivotal synergy leading to adult bone tissue formation. Cell Death Differ 14(6):1162–1171

    Google Scholar 

  • d’Aquino R et al (2011) Human neural crest-derived postnatal cells exhibit remarkable embryonic attributes either in vitro or in vivo. Eur Cell Mater 21:304–316

    Google Scholar 

  • Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  • Duailibi MT et al (2004) Bioengineered teeth from cultured rat tooth bud cells. J Dent Res 83(7):523–528.

    Google Scholar 

  • Gandia C et al (2008) Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction. Stem Cells 26(3):638–645

    Article  PubMed  Google Scholar 

  • Govindasamy V et al (2010) Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. J Endod 36(9):1504–1515

    Article  PubMed  Google Scholar 

  • Govindasamy V et al (2011) Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 90(5):646–652

    Google Scholar 

  • Gronthos S et al (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S et al (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8):531–535

    Article  PubMed  CAS  Google Scholar 

  • He H et al (2008) Effects of FGF2 and TGFbeta1 on the differentiation of human dental pulp stem cells in vitro. Cell Biol Int 32(7):827–834

    Google Scholar 

  • Honda MJ et al (2007). Side population cells expressing ABCG2 in human adult dental pulp tissue. Int Endod J 40(12):949–958

    Google Scholar 

  • Huang GT et al (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806

    Article  PubMed  CAS  Google Scholar 

  • Huang GT et al (2006) In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 324(2):225–236

    Article  PubMed  Google Scholar 

  • Huang S et al (2007) Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev Biol 305(2):695–713

    Google Scholar 

  • Iida K et al (2010) Hypoxia enhances colony formation and proliferation but inhibits differentiation of human dental pulp cells. Arch Oral Biol 55(9):648–654

    Google Scholar 

  • Iohara K et al (2004) Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res 83(8):590–595

    Google Scholar 

  • Iohara K et al (2006) Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells 24(11):2493–2503

    Article  PubMed  CAS  Google Scholar 

  • Ishkitiev N et al (2010) Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endod 36(3):469–474

    Article  PubMed  Google Scholar 

  • Kadar K et al (2009) Differentiation potential of stem cells from human dental origin - promise for tissue engineering. J Physiol Pharmacol 60 Suppl 7:167–175

    Google Scholar 

  • Karahuseyinoglu S et al (2007a) Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells 25(2):319–331

    Google Scholar 

  • Karahuseyinoglu S et al (2008) Functional structure of adipocytes differentiated from human umbilical cord stroma-derived stem cells. Stem Cells 26(3):682–691

    Google Scholar 

  • Kerkis I, Caplan AI (2012) Stem cells in dental pulp of deciduous teeth. Tissue Eng Part B Rev 18(2):129–138

    Article  PubMed  CAS  Google Scholar 

  • Kerkis I et al (2006) Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 184(3–4):105–116

    Article  PubMed  CAS  Google Scholar 

  • Kim JK et al (2011) mTor plays an important role in odontoblast differentiation. J Endod 37(8):1081–1085

    Article  PubMed  Google Scholar 

  • Kiraly M et al (2011) Integration of neuronally predifferentiated human dental pulp stem cells into rat brain in vivo. Neurochem Int 59(3):371–381

    Google Scholar 

  • Komori T et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764

    Google Scholar 

  • Komori T (2010) Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 339(1):189–195

    Article  PubMed  CAS  Google Scholar 

  • Koyama N et al (2009) Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg 67(3):501–506

    Article  PubMed  Google Scholar 

  • Kronenberg HM (2004) Twist genes regulate Runx2 and bone formation. Dev Cell 6(3):317–318

    Google Scholar 

  • Laino G et al (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res 20(8):1394–1402

    Article  PubMed  Google Scholar 

  • Laino G et al (2006) An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol 206(3):693–701

    Google Scholar 

  • Lee JY et al (2011) The effects of platelet-rich plasma derived from human umbilical cord blood on the osteogenic differentiation of human dental stem cells. In Vitro Cell Dev Biol Anim 47(2):157–164

    Article  PubMed  Google Scholar 

  • Lengner CJ et al (2007) Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell 1(4):403–415

    Google Scholar 

  • Li Y et al (2011) TWIST1 promotes the odontoblast-like differentiation of dental stem cells. Adv Dent Res 23(3):280–284

    Google Scholar 

  • Liu H et al (2006) Dental pulp stem cells. Methods Enzymol 419:99–113

    Article  PubMed  CAS  Google Scholar 

  • Liu L et al (2011) Expression pattern of Oct-4, Sox2, and c-Myc in the primary culture of human dental pulp derived cells. J Endod 37(4):466–472

    Article  PubMed  Google Scholar 

  • Lizier NF et al (2012) Scaling-up of dental pulp stem cells isolated from multiple niches. PLoS One 7(6):e39885

    Google Scholar 

  • Mehrazarin S et al (2011) Impaired odontogenic differentiation of senescent dental mesenchymal stem cells is associated with loss of Bmi-1 expression. J Endod 37(5):662–666

    Google Scholar 

  • Min JH et al (2011) Dentinogenic potential of human adult dental pulp cells during the extended primary culture. Hum Cell 24(1):43–50

    Google Scholar 

  • Miyazaki T et al (2008) Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol 71(2):131–146

    Article  PubMed  CAS  Google Scholar 

  • Nakamura S et al (2009) Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod 35(11):1536–1542

    Article  PubMed  Google Scholar 

  • Nakashima M et al (2004) Stimulation of reparative dentin formation by ex vivo gene therapy using dental pulp stem cells electrotransfected with growth/differentiation factor 11 (Gdf11). Hum Gene Ther 15(11):1045–1053

    Google Scholar 

  • Nam S et al (2011) Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules. J Tissue Eng 2011:812547

    PubMed  Google Scholar 

  • Nourbakhsh N et al (2011) Induced in vitro differentiation of neural-like cells from human exfoliated deciduous teeth-derived stem cells. Int J Dev Biol 55(2):189–195

    PubMed  Google Scholar 

  • Ohazama A et al (2004) Stem-cell-based tissue engineering of murine teeth. J Dent Res 83(7):518–522

    Google Scholar 

  • Okamoto Y et al (2009) Simvastatin induces the odontogenic differentiation of human dental pulp stem cells in vitro and in vivo. J Endod 35(3):367–372

    Google Scholar 

  • Oktar PA et al (2011) Continual expression throughout the cell cycle and downregulation upon adipogenic differentiation makes nucleostemin a vital human MSC proliferation marker. Stem Cell Rev 7(2):413–424

    Article  PubMed  Google Scholar 

  • Osathanon T et al (2011) Basic fibroblast growth factor inhibits mineralization but induces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCgamma signaling pathway. J Cell Biochem 112(7):1807–1816

    Google Scholar 

  • Paino F et al (2010) Ecto-mesenchymal stem cells from dental pulp are committed to differentiate into active melanocytes. Eur Cell Mater 20:295–305

    Article  PubMed  CAS  Google Scholar 

  • Papaccio G et al (2006) Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol 208(2):319–325

    Article  PubMed  CAS  Google Scholar 

  • Pivoriuunas A et al (2010) Proteomic analysis of stromal cells derived from the dental pulp of human exfoliated deciduous teeth. Stem Cells Dev 19(7):1081–1093

    Article  PubMed  CAS  Google Scholar 

  • Sarraf CE et al (2011) In vitro mesenchymal stem cell differentiation after mechanical stimulation. Cell Prolif 44(1):99–108

    Google Scholar 

  • Shi S et al (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29(6):532–539

    Article  PubMed  CAS  Google Scholar 

  • Stevens A et al (2008) Human dental pulp stem cells differentiate into neural crest-derived melanocytes and have label-retaining and sphere-forming abilities. Stem Cells Dev 17(6):1175–1184

    Google Scholar 

  • Struys T et al (2011) Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells. Cells Tissues Organs 193(6):366–378

    Article  PubMed  CAS  Google Scholar 

  • Thesleff I et al (1995) Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int J Dev Biol 39(1):35–50

    PubMed  CAS  Google Scholar 

  • Wang J et al (2010) The presence of a side population and its marker ABCG2 in human deciduous dental pulp cells. Biochem Biophys Res Commun 400(3):334–339

    Article  PubMed  CAS  Google Scholar 

  • Wang X et al (2011) Inhibition of Delta1 promotes differentiation of odontoblasts and inhibits proliferation of human dental pulp stem cell in vitro. Arch Oral Biol 56(9):837–845

    Google Scholar 

  • Wang YH et al (2006) Examination of mineralized nodule formation in living osteoblastic cultures using fluorescent dyes. Biotechnol Prog 22(6):1697–1701

    Google Scholar 

  • Yamada Y et al (2006) A feasibility of useful cell-based therapy by bone regeneration with deciduous tooth stem cells, dental pulp stem cells, or bone-marrow-derived mesenchymal stem cells for clinical study using tissue engineering technology. Tissue Eng Part A 16(6):1891–1900

    Article  PubMed  CAS  Google Scholar 

  • Yang B et al (2012) Tooth root regeneration using dental follicle cell sheets in combination with a dentin matrix - based scaffold. Biomaterials 33(8):2449–2461

    Article  PubMed  CAS  Google Scholar 

  • Yang X et al (2007) The odontogenic potential of STRO-1 sorted rat dental pulp stem cells in vitro. J Tissue Eng Regen Med 1(1):66–73

    Article  PubMed  CAS  Google Scholar 

  • Yang X et al (2009) Mineralized tissue formation by BMP2-transfected pulp stem cells. J Dent Res 88(11):1020–1025

    Google Scholar 

  • Yildirim S et al (2012) Diff erentiation potentials of two stroma-resident tissue-specifi c stem cells. Niche Niche, Journal of Cellular Therapy and Regenerative Medicine (in Press)

    Google Scholar 

  • Yildirim S et al (2008) The role of dental pulp cells in resorption of deciduous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105(1):113–120

    Article  PubMed  CAS  Google Scholar 

  • Yu F et al (2006a) Drosophila neuroblast asymmetric cell division: recent advances and implications for stem cell biology. Neuron 51(1):13–20

    Article  PubMed  CAS  Google Scholar 

  • Yu J et al (2010) Differentiation potential of STRO-1+ dental pulp stem cells changes during cell passaging. BMC Cell Biol 11:32

    Article  PubMed  Google Scholar 

  • Yu J et al (2006b) Probing gene expression in live cells, one protein molecule at a time. Science 311(5767):1600–1603

    Article  PubMed  CAS  Google Scholar 

  • Yu V et al (2009) Dynamic hydrostatic pressure promotes differentiation of human dental pulp stem cells. Biochem Biophys Res Commun 386(4):661–665

    Article  PubMed  CAS  Google Scholar 

  • Zhang H et al (2012) Natural mineralized scaffolds promote the dentinogenic potential of dental pulp stem cells via the mitogen-activated protein kinase signaling pathway. Tissue Eng Part A 18(7–8):677–691

    Google Scholar 

  • Zhou JX et al (2011) Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model. PLoS One 6(3):e14752

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Author

About this chapter

Cite this chapter

Yildirim, S. (2013). Characterization of DPSC. In: Dental Pulp Stem Cells. SpringerBriefs in Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5687-2_6

Download citation

Publish with us

Policies and ethics