Skip to main content

Dental Pulp Is a Connective Tissue

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Stem Cells ((BRIEFSSTEM))

Abstract

Although dental pulp has been classified as a loose connective tissue, several unique properties such as the presence of odontoblasts, absence of histamine-releasing mast cells, tissue confinement in a hard cavity with little collateral circulation, and vascular access limited to the root apex are the features that distinguish pulp tissue from other connective tissues (Dummett and Kopel 2002).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angelova A et al (2004) Immunocompetent cells in the pulp of human deciduous teeth. Arch Oral Biol 49(1):29–36

    Article  PubMed  CAS  Google Scholar 

  • Arana-Chavez VE, Massa LF (2004) Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol 36(8):1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Avery J (2002) Oral development and histology. Thieme, Stuttgart

    Google Scholar 

  • Caviedes-Bucheli J et al (2008) Neuropeptides in dental pulp: the silent protagonists. J Endod 34(7):773–788

    Article  PubMed  Google Scholar 

  • Dummett C, Kopel H (2002) Pediatric endodontics. In: Ingle J, Bakland L (eds) Endodontics. BC Becker Inc, Ontario, pp 862–902

    Google Scholar 

  • Durand SH et al (2006) Lipoteichoic acid increases TLR and functional chemokine expression while reducing dentin formation in in vitro differentiated human odontoblasts. J Immunol 176(5):2880–2887

    PubMed  CAS  Google Scholar 

  • Farges JC et al (2009) Odontoblasts in the dental pulp immune response. J Exp Zool B Mol Dev Evol 312B(5):425–436

    Article  PubMed  CAS  Google Scholar 

  • Fox AG, Heeley JD (1980) Histological study of pulps of human primary teeth. Arch Oral Biol 25(2):103–110

    Article  PubMed  CAS  Google Scholar 

  • Furseth R (1968) The resorption processes of human deciduous teeth studied by light microscopy, microradiography and electron microscopy. Arch Oral Biol 13(4):417–431

    Article  PubMed  CAS  Google Scholar 

  • Glick M et al (1991) Human immunodeficiency virus infection of fibroblasts of dental pulp in seropositive patients. Oral Surg Oral Med Oral Pathol 71(6):733–736

    Article  PubMed  CAS  Google Scholar 

  • Hao J et al (2005) Identification of differentially expressed cDNA transcripts from a rat odontoblast cell line. Bone 37(4):578–588

    Article  PubMed  CAS  Google Scholar 

  • Henry MA et al (2012) Unmyelinated nerve fibers in the human dental pulp express markers for myelinated fibers and show sodium channel accumulations. BMC Neurosci 13:29

    Article  PubMed  CAS  Google Scholar 

  • Joao SM, Arana-Chavez VE (2004) Tight junctions in differentiating ameloblasts and odontoblasts differentially express ZO-1, occludin, and claudin-1 in early odontogenesis of rat molars. Anat Rec A Discov Mol Cell Evol Biol 277(2):338–343

    Article  PubMed  Google Scholar 

  • Jontell M et al (1998) Immune defense mechanisms of the dental pulp. Crit Rev Oral Biol Med 9(2):179–200

    Article  PubMed  CAS  Google Scholar 

  • Kawagishi E et al (2006) Pulpal responses to cavity preparation in aged rat molars. Cell Tissue Res 326(1):111–122

    Article  PubMed  CAS  Google Scholar 

  • Koshida R et al (2010) A novel nonsense mutation in the DMP1 gene in a Japanese family with autosomal recessive hypophosphatemic rickets. J Bone Miner Metab 28(5):585–590

    Article  PubMed  CAS  Google Scholar 

  • Lesot H et al (2001) Epigenetic signals during odontoblast differentiation. Adv Dent Res 15:8–13

    Article  PubMed  CAS  Google Scholar 

  • Marks SC Jr, Schroeder HE (1996) Tooth eruption: theories and facts. Anat Rec 245(2):374–393

    Article  PubMed  Google Scholar 

  • Nanci A (2008) Ten Cate’s oral histology: development, structure, and function. Mosby Elsevier, St Louis

    Google Scholar 

  • Nancy P et al (2012) Chemokine gene silencing in decidual stromal cells limits T cell access to the maternal-fetal interface. Science 336(6086):1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Ohshima H et al (1999) The distribution and ultrastructure of class II MHC-positive cells in human dental pulp. Cell Tissue Res 295(1):151–158

    Article  PubMed  CAS  Google Scholar 

  • Okiji T (2002) Pulp as a connective tissue. In: Hargreaves K, Goodis H (eds) Seltzer and Bender’s dental pulp. Quintessence Books, Chicago

    Google Scholar 

  • Qin C et al (2003) Dentin sialoprotein in bone and dentin sialophosphoprotein gene expressed by osteoblasts. Connect Tissue Res 44(Suppl 1):179–183

    PubMed  CAS  Google Scholar 

  • Sasaki T, Garant PR (1996) Structure and organization of odontoblasts. Anat Rec 245(2):235–249

    Article  PubMed  CAS  Google Scholar 

  • Shackelford DA et al (1982) HLA-DR antigens: structure, separation of subpopulations, gene cloning and function. Immunol Rev 66:133–187

    Article  PubMed  CAS  Google Scholar 

  • Simon S et al (2009) Molecular characterization of young and mature odontoblasts. Bone 45(4):693–703

    Article  PubMed  CAS  Google Scholar 

  • Simsek S, Duruturk L (2005) A flow cytometric analysis of the biodefensive response of deciduous tooth pulp to carious stimuli during physiological root resorption. Arch Oral Biol 50(5):461–468

    Article  PubMed  Google Scholar 

  • Staquet MJ et al (2008) Different roles of odontoblasts and fibroblasts in immunity. J Dent Res 87(3):256–261

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S et al (2012) Dentin sialophosphoprotein and dentin matrix protein-1: two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol 57(9):1165–75

    Article  PubMed  CAS  Google Scholar 

  • Veerayutthwilai O et al (2007) Differential regulation of immune responses by odontoblasts. Oral Microbiol Immunol 22(1):5–13

    Article  PubMed  CAS  Google Scholar 

  • Yildirim S et al (2008) The role of dental pulp cells in resorption of deciduous teeth. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105(1):113–120

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba K et al (2003) Class II antigen-presenting dendritic cell and nerve fiber responses to cavities, caries, or caries treatment in human teeth. J Dent Res 82(6):422–427

    Article  PubMed  CAS  Google Scholar 

  • Yoshiba N et al (1998) Immunohistochemical localizations of class II antigens and nerve fibers in human carious teeth: HLA-DR immunoreactivity in Schwann cells. Arch Histol Cytol 61(4):343–352

    Article  PubMed  CAS  Google Scholar 

  • Zarrabi MH et al (2011) Immunohistochemical expression of fibronectin and tenascin in human tooth pulp capped with mineral trioxide aggregate and a novel endodontic cement. J Endod 37(12):1613–1618

    Article  PubMed  Google Scholar 

  • Zhang J et al (2007) Expressions of fibronectin and bone morphogenetic protein-2, 4 during development of mouse tooth germ. Sichuan Da Xue Xue Bao Yi Xue Ban 38(5):826–828

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Author

About this chapter

Cite this chapter

Yildirim, S. (2013). Dental Pulp Is a Connective Tissue. In: Dental Pulp Stem Cells. SpringerBriefs in Stem Cells. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5687-2_3

Download citation

Publish with us

Policies and ethics