Skip to main content

Remote Sensing of Natural Disasters

  • Chapter
  • First Online:
Earth System Monitoring
  • 2240 Accesses

Abstract

Remote sensing involves the use of instruments to study phenomena from a distance. Natural disasters derive from natural hazards such as volcanoes, flooding, fires, and weather. Practically speaking, “remote sensing of natural disasters” principally refers to the use of airborne or spaceborne sensors to study natural disasters for detecting, modeling, predicting, analyzing, and mitigating effects on human populations and activities.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MODIS:

The MODerate resolution Imaging Spectrometer is a general purpose instrument flying on the Terra and Aqua spacecraft that can sense both visible and thermal infrared information on the earth’s surface and atmosphere.

GOES:

The Geostationary Operational Environmental Satellite system is a set of satellites that continuously cover fixed regions of Earth. For example, GOES-East provides continuous coverage of North and South America.

AVHRR:

Advanced Very High Resolution Radiometer is a sensor carried on the National Oceanic and Atmospheric Administration (NOAA) family of polar orbiting platforms (POES). AVHRR has five wide spectral bands that sense principally the near-infrared and thermal infrared spectrum.

ASTER:

Advanced Spaceborne Thermal Emission and Reflection Radiometer is an instrument on the Terra satellite that senses visible, near-infrared, short infrared, and long-wave/thermal infrared spectrum.

Earth Observing One (EO-1):

An Earth orbiting, pointable spacecraft that has been used to demonstrate a wide range of automation and autonomic technologies including onboard mission replanning and sensorwebs.

Hyperion:

The Hyperspectral instrument on EO-1 used onboard to detect flooding, volcanic activity, and cryosphere change. Hyperion is able to measure in the Very Near to Short Wave infrared spectrum.

Synthetic aperture radar (SAR):

A radar remote sensing technique in which motion of the radar is used to synthesize a large array through radar processing. SAR can be used to distinguish between various surface types such as water, land, vegetation cover type and density, and others.

Interferometric synthetic aperture radar (InSAR):

A remote sensing technique which enables detailed topography, change detection, and motion tracking with great precision. InSAR has applications to deriving digital elevation maps (DEMs) as well as tracking land motion (e.g., after earthquakes), ice sheet motion, and change detection after major disturbances such as landslides, fires, flooding, and other natural disasters.

Lahar:

A mud or debris flow–caused volcanic activity combined with water, snow, or ice.

Bibliography

  1. Harris AJ, Flynn LP, Dean K, Wooster EM, Okubo C, Mouginis-Mark P et al (2000) Real-time satellite monitoring of volcanic hot spots. Geophys Monogr 116:139–159

    Article  Google Scholar 

  2. Wright R, Flynn LP, Garbeil H, Harris A, Piler E (2003) Automated volcanic eruption detection using MODIS. Remote Sens Environ 82:135–155

    Article  Google Scholar 

  3. Wright R, Flynn LP, Garbeil H, Harris A, Piler E (2004) MODVOLC: near-real-time thermal monitoring of global volcanism. J Volcanol Geoth Res 135:29–49

    Article  ADS  Google Scholar 

  4. Pieri D, Abrams M (2004) ASTER watches the world’s volcanoes: a new paradigm for volcanological observations from orbit. J Volcanol Geoth Res 135(1–2):13–28

    Article  ADS  Google Scholar 

  5. Davies AG, Chien S, Baker V, Doggett T, Dohm J, Greeley R, Ip F, Castano R, Cichy B, Rabideau G, Tran D, Sherwood R (2006) Monitoring active volcanism with the autonomous sciencecraft, experiment on EO-1. Remote Sens Environ 101:427–446

    Article  Google Scholar 

  6. Davies AG, Calkins J, Scharenbroich L, Vaughan G, Wright R, Kyle P, Castano R, Chien S, Tran D (2008) Multi-instrument remote and in situ observations of the erebus volcano (Antarctica) lava lake in 2005: a comparison with the Pele lava lake on the Jovian moon Io. J Volcanol Geoth Res 177(3):705–724

    Article  ADS  Google Scholar 

  7. Pieri D, Gubbels T, Hufford G, Olsson G, Realmuto V (2006) Assessing mesoscale volcanic aviation hazards using ASTER. Eos Trans AGU 87(52). Fall meet. Suppl, Abstract H33E-1554

    Google Scholar 

  8. Novak MA, Watson IM, Delgado-Granados H, Rose WI, Cardenas-Gonzalez L, Realmuto VJ (2008) Volcanic emissions from Popocatépetl volcano, Mexico, quantified using moderate resolution imaging spectroradiometer (MODIS) infrared data: a case study of the December 2000–January 2001 emissions. J Volcanol Geoth Res 170:76–85

    Article  ADS  Google Scholar 

  9. Andronico D, Spinetti C, Cristaldi A, Buongiorno MF (2009) Observations of Mt. Etna volcanic ash plumes in 2006: an integrated approach from ground-based and polar satellite NOAA–AVHRR monitoring system. J Volcanol Geoth Res 180(2–4):135–147

    Article  ADS  Google Scholar 

  10. Tralli DM, Blom RG, Zlotnicki V, Donnellan A, Evans DL (2005) Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS J Photogramm 59(4):185–198

    Article  Google Scholar 

  11. Joyce K, Samsonov S, Manville V, Jongens R, Graettiner A, Cronin S (2009). Remote sensing data types and techniques for lahar path detection: a case study at Mt Ruapehu, New Zealand. Remote Sens Environ113(8) 1778–1786; Wright R, Flynn L, Garbeil H, Harris A, Piler E (2002). Automated volcanic eruption detection using MODIS. Remote Sens Environ 82(1) 135–155

    Google Scholar 

  12. Brakenridge GR, Anderson E (2005) MODIS-based flood detection, mapping, and measurement: the potential for operational hydrological applications. In: Transboundary floods, proceeding of NATO advanced research workshop, Baile Felix – Oradea, 4–8 May 2005

    Google Scholar 

  13. Brakenridge G R (2010). DFO MODIS flood retrieval algorithm. http://floodobservatory.colorado.edu/Tech.html. Accessed 21 Mar 2011

  14. Carroll M, Townshend J, Noojipady P, DiMiceli C, Sohlberg R (2009). Surface water dynamics derived from the MODIS data record. Spring AGU

    Google Scholar 

  15. Ip F, Dohm J, Baker V, Doggett T, Davies A, Castano R, Chien S, Cichy B, Greeley R, Sherwood R, Tran D, Rabideau G (2006) Flood detection and monitoring with the autonomous sciencecraft experiment onboard EO-1. Remote Sens Environ 101(4):463–481

    Article  Google Scholar 

  16. Chien S, Doubleday J, Mclaren D, Tran D, Khunboa C, Leelapatra W, Plergamon V, Tanpipat V, Raghavendra C, Mandl D (2011). Using multiple space assets with In-situ measurements to track flooding in Thailand. In: 34th international symposium on remote sensing of environment, Sydney

    Google Scholar 

  17. Brakenridge GR, Nghiem SV, Anderson E, Chien S (2005) Space-based measurement of river runoff. Eos Trans AGU 86(19):185. doi:10.1029/2005EO190001

    Article  ADS  Google Scholar 

  18. Townsend P (2001) Mapping seasonal flooding in forested wetlands using multi-temporal Radar- sat SAR. Photogramm Eng Remote Sens 67:3055–3074

    Google Scholar 

  19. Marti-Cardona B, Lopez-Martinez C, Dolz-Ripolles J, Blade-Castellet E (2010) ASAR polarimetric, multi-incidence angle and multitemporal characterization of Doñana wetlands for flood extent monitoring. Remote Sens Environ 114(11):2802–2815

    Article  Google Scholar 

  20. Justice CO, Malingreau JP, Seltzer A (1993) Satellite remote sensing of fires: potential and limitations. In: Crutzen P, Goldammer J (eds) Fire in the environment: the ecological, atmospheric, and climatic importance of vegetation fires. Wiley, New York, pp 77–88

    Google Scholar 

  21. Prins EM, Menzel WP (1992) Geostationary satellite detection of biomass burning in South America. Int Remote Sens 13:2783–2799

    Article  Google Scholar 

  22. Menzel WP, Prins EM (1996). Monitoring fire activity in western hemisphere with the new generation of geostationary satellites. In: 22nd conference on agricultural and forest meteorology with symposium on fire and forest meteorology, Atlanta, 28 Jan−2 Feb, 1996, pp 272–275

    Google Scholar 

  23. Elvidge C, Kroehl HW, Kihn EA, Baugh KE, Davis ER, Hao WM (1996) Algorithm for the retrieval of fire pixels from DMSP operational linescan system data. In: Levine JS (ed) Biomass burning and global change, vol 1. The MIT Press, Cambridge, MA, pp 73–85

    Google Scholar 

  24. Elvidge C, Dee WP, Elaine P, Eric AK, Jackie K, Kimberly EB (1998) Remote sensing change detection: environmental monitoring methods and applications, wildfire detection with meteorological satellite data: results from New Mexico during June of 1996 using GOES, AVHRR, and DMSP-OLS. CRC Press, Boca Raton, FL, pp 103–121

    Google Scholar 

  25. Arino O, Rosaz J (1999). 1997 and 1998 world ASTR fire atlas using ERS-2 ATSR-2 data. In: Neuenschwander LF, Tyan KC, Golberg GE (eds) Proceedings of the joint fire science conference, Boise, Idaho, 15–17 June 1999. University of Idaho and the International Association of Wildland Fire, Boise, pp 177–182

    Google Scholar 

  26. Giglio L, Kendall JD, Tucker CJ (2000) Remote Sensing of fires with TRMM VIRS. Int J Remote Sens 21:203–207

    Article  Google Scholar 

  27. Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithms for MODIS. Remote Sens Environ 87:273–282

    Article  Google Scholar 

  28. Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83:244–262

    Article  Google Scholar 

  29. Roy DP, Boschetti L, Justice CO, Ju J (2008) The collection 5 MODIS burned area product – Global evaluation by comparison with the MODIS active fire product. Remote Sens Environ 112(9):3690–3707. doi:10.1016/j.rse.2008.05.013, ISSN 0034-4257

    Article  Google Scholar 

  30. Ressl R, Lopez G, Cruz I, Colditz RR, Schmidt M, Ressl S, Jimenez R (2009) Operational active fire mapping and burnt area identification applicable to Mexican nature protection areas using MODIS and NOAA-AVHRR direct readout data. Remote Sens Environ 113(6):1113–1126. doi:10.1016/j.rse.2008.10.016, ISSN 0034-4257

    Article  Google Scholar 

  31. Amraoui M, DaCamara CC, Pereira JMC (2010) Detection and monitoring of African vegetation fires using MSG-SEVIRI imagery. Remote Sens Environ 114(5):1038–1052. doi:10.1016/j.rse.2009.12.019, ISSN 0034-4257

    Article  Google Scholar 

  32. Tanpipat V, Honda K, Nuchaiya P (2009) MODIS hotspot validation over Thailand. Remote Sens 1:1043–1054. doi:10.3390/rs1041043, ISSN 2072-4292

    Article  Google Scholar 

  33. Chuvieco E, Aguado I, Yebra M, Nieto H, Salas J, Martin MP, Vilar L, Martinez J, Martin S, Ibarra P, Riva JDL, Baeza J, Rodriguez F, Molina JR, Herrera MA, Zamora R (2010). Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol Model 221(1 Special issue on spatial and temporal patterns of wildfires: models, theory, and reality) 46–58, doi: 10.1016/j.ecolmodel.2008.11.017, ISSN 0304–3800

    Google Scholar 

  34. Maeda EE, Arcoverde GFB, Pellikka PKE, Shimabukuro YE (2011) Fire risk assessment in the Brazilian Amazon using MODIS imagery and change vector analysis. Applied Geography 31(1):76–84. doi:10.1016/j.apgeog.2010.02.004, ISSN 0143-6228

    Article  Google Scholar 

  35. Schneider P, Roberts DA, Kyriakidis PC (2008) A VARI-based relative greenness from MODIS data for computing the Fire Potential Index. Remote Sens Environ 112(3):1151–1167. doi:10.1016/j.rse.2007.07.010, ISSN 0034-4257

    Article  Google Scholar 

  36. Huesca M, Litago J, Palacios-Orueta A, Montes F, Sebastian-Lopez A, Escribano P(2009). Assessment of forest fire seasonality using MODIS fire potential: a time series approach. Agr Forest Meteorol 149(11 Special section on water and carbon dynamics in selected ecosystems in China) 1946–1955, doi: 10.1016/j.agrformet.2009.06.022, ISSN 0168–1923

    Google Scholar 

  37. Giglio L, Loboda T, Roy DP, Quayle B, Justice CO (2009) An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens Environ 113(2):408–420. doi:10.1016/j.rse.2008.10.006, ISSN 0034-4257

    Article  Google Scholar 

  38. Libonati R, DaCamara CC, Pereira JMC, Peres LF (2010) Retrieving middle-infrared reflectance for burned area mapping in tropical environments using MODIS. Remote Sens Environ 114(4):831–843. doi:10.1016/j.rse.2009.11.018, ISSN 0034-4257

    Article  Google Scholar 

  39. Dubinin M, Potapov P, Lushchekina A, Radeloff VC (2010) Reconstructing long time series of burned areas in arid grasslands of southern Russia by satellite remote sensing. Remote Sens Environ 114(8):1638–1648. doi:10.1016/j.rse.2010.02.010, ISSN 0034-4257

    Article  Google Scholar 

  40. Zhang X, Kondragunta S (2008) Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product. Remote Sens Environ 112(6):2886–2897. doi:10.1016/j.rse.2008.02.006, ISSN 0034-4257

    Article  Google Scholar 

  41. Veraverbeke S, Lhermitte S, Verstraeten WW, Goossens R (2011) A time-integrated MODIS burn severity assessment using the multi-temporal differenced normalized burn ratio (dNBRMT). Int J Appl Earth Obs Geoinformation 13(1):52–58. doi:10.1016/j.jag.2010.06.006, ISSN 0303–2434

    Article  ADS  Google Scholar 

  42. Santis AD, Asner GP, Vaughan PJ, Knapp DE (2010) Mapping burn severity and burning efficiency in California using simulation models and landsat imagery. Remote Sens Environ 114(7):1535–1545. doi:10.1016/j.rse.2010.02.008, ISSN 0034–4257

    Article  Google Scholar 

  43. Fox DM, Maselli F, Carrega P (2008) Using SPOT images and field sampling to map burn severity and vegetation factors affecting post forest fire erosion risk. CATENA 75(3):326–335. doi:10.1016/j.catena.2008.08.001, ISSN 0341–8162

    Article  Google Scholar 

  44. Yebra M, Chuvieco E, Riano D (2008) Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agr Forest Meteorol 148(4):523–536. doi:10.1016/j.agrformet.2007.12.005, ISSN 0168–1923

    Article  Google Scholar 

  45. Peterson HS, Roberts DA, Dennison PE (2008) Mapping live fuel moisture with MODIS data: A multiple regression approach. Remote Sens Environ 112(12):4272–4284. doi:10.1016/j.rse.2008.07.012, ISSN 0034–4257

    Article  Google Scholar 

  46. Hyer EJ, Chew BN (2010) Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia. Atmos Environ 44(11):1422–1427. doi:10.1016/j.atmosenv.2010.01.043, ISSN 1352–2310

    Article  ADS  Google Scholar 

  47. Henderson SB, Burkholder B, Jackson PL, Brauer M, Ichoku C (2008) Use of MODIS products to simplify and evaluate a forest fire plume dispersion model for PM10 exposure assessment. Atmos Environ 42(36):8524–8532. doi:10.1016/j.atmosenv.2008.05.008, ISSN 1352–2310

    Article  Google Scholar 

  48. Zhang X, Kondragunta S, Schmidt C, Kogan F (2008) Near real time monitoring of biomass burning particulate emissions (PM2.5) across contiguous United States using multiple satellite instruments. Atmos Environ 42(29):6959–6972. doi:10.1016/j.atmosenv.2008.04.060, ISSN 1352–2310

    Article  Google Scholar 

  49. Balch JK, Nepstad DC, Curran LM, Brando PM, Portela O, Guilherme P, Reuning-Scherer JD Jr, Carvalho OD (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. Forest Ecol Manage 261(1):68–77. doi:10.1016/j.foreco.2010.09.029, ISSN 0378–1127

    Article  Google Scholar 

  50. Bonazountas M, Kallidromitou D, Kassomenos P, Passas N (2006) A decision support system for managing forest fire casualities. Environ Manage. doi:10.1016/j.jenvman.2006.06.016

    Google Scholar 

  51. Chien S, Cichy B, Davies A, Tran D, Rabideau G, Castano R, Sherwood R, Mandl D, Frye S, Shulman S, Jones J, Grosvenor S (2005) An autonomous earth observing sensorweb. IEEE Intell Syst 20:16–24

    Article  Google Scholar 

  52. Chien S, Davies A, Doubleday J, Tran D, Jones S, Kjartansson E, Vogfjord K, Gudmundsson M, Thordarson T, Mandl D (2011). Integrating multiple space and ground sensors to track volcanic activity. In: 34th international symposium on remote sensing of environment, Sydney

    Google Scholar 

Download references

Acknowledgments

Portions of the research described in this entry were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Chien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chien, S., Tanpipat, V. (2013). Remote Sensing of Natural Disasters. In: Orcutt, J. (eds) Earth System Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5684-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5684-1_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5683-4

  • Online ISBN: 978-1-4614-5684-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics