Skip to main content

Remote Sensing Applications to Ocean and Human Health

  • Chapter
  • First Online:
Earth System Monitoring

Abstract

Remote sensing is defined here as the acquisition of information about an object without physical contact by way of recording or sensing devices mounted on aircraft, satellites, or simply sited on a high hill or bluff overlooking an area of interest. Ocean and human health is the general field that assesses conditions in the marine environment including estuaries that are relevant to the well-being of living resources and to the use of these resources and seawater by humans for amenities or the sustenance of life.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Attenuation depth:

Attenuation depth is a measure of how far electromagnetic radiation including light can penetrate into a substance. It is the depth at which the intensity of the radiation falls to 1/e (∼37%) of its original value immediately below the surface.

Diffuse attenuation coefficient:

The irradiance at a wavelength λ propagates over a distance (z) as determined by the diffuse attenuation coefficient. In aquatic environments, the diffuse attenuation coefficient is an indicator of the turbidity of the water.

Hyperspectral:

Hyperspectral data are collected by instruments called imaging spectrometers. These sensors are able to collect information from across the electromagnetic spectrum at a fine resolution of bands as narrow as 0.001 or smallerμm over a wide wavelength range, typically at least 0.4–2.4μm.

Irradiance:

Irradiance is a radiometry term for the power of electromagnetic radiation per unit area at a surface. Irradiance is used when the electromagnetic radiation is incident on the surface, and it has units of watts per square meter (W/m2).

Ocean color:

Ocean color is a general term used in the study of the biological and biogeochemical properties of ocean waters through remote sensing of the reflected and transmitted visible radiation. The “color” of the ocean comes from the interaction between light, water, and substances in the water, particularly phytoplankton (microscopic, free-floating photosynthetic organisms), detritus and inorganic particulates, and colored dissolved matter.

Radiance:

Radiance is a radiometric measure that describes the amount of light that passes through or is emitted from a particular surface area, contained within a given solid angle in a specified direction. It is used to characterize both emission and reflection from surfaces. The SI unit of radiance is watts per steradian per square meter (W·sr−1·m−2).

Thermal infrared radiation (TIR):

Thermal infrared radiation refers to electromagnetic waves with a wavelength of between 3.5 and 20μm. These waves are used to estimate the temperature of the surface of targets. This is a radiation typically emitted by objects as opposed to visible and short-wave infrared radiation which is part of the spectrum of sunlight reflected by objects.

Turbidity:

Turbidity is the relative clarity of a liquid and is an expression of the optical properties of water that causes light to be scattered and absorbed by particles and molecules rather than transmitted in a straight line through a water sample. It is a function of the concentration of suspended matter or impurities that interfere with the clarity of the water. Turbidity is a common index of water quality.

Visible, near infrared, and short-wave infrared (VIS, NIR, and SWIR):

This broad band of electromagnetic radiation is used in remote sensing of the reflectance of the Earth. Light that is visible to the human eye is visible radiation (VIS) and encompasses a wavelength range from about 380–400 nm to about 760–780 nm. Near-infrared (NIR) radiation encompasses 0.75–1.4μm in wavelength. The short-wave infrared (SWIR) is the wavelength range 1.4–3μm. Together, this region of the spectrum is sometimes known as VSWIR.

Bibliography

  1. Muller-Karger FE (1992) Remote sensing of marine pollution: a challenge for the 1990s. Mar Pollut Bull 25(1–4):54–60

    Article  Google Scholar 

  2. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past century. Nature 466:591–596. doi:10.1038/nature09268

    Article  ADS  Google Scholar 

  3. Polovina JJ, Howell EA, Abecassis M (2008) Ocean’s least productive waters are expanding. Geophys Res Lett 35:L03618. doi:10.1029/2007GL031745

    Article  Google Scholar 

  4. Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755 (7 Dec 2006). doi: 10.1038/nature05317

    Article  ADS  Google Scholar 

  5. Gledhill DK, Wanninkhof R, Eakin CM (2009) Observing ocean acidification from space. Oceanography 22(4):48–59

    Article  Google Scholar 

  6. Orr JC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686

    Article  ADS  Google Scholar 

  7. Chavez FP, Ryan J, Lluch-Cota SE, Miguel ÑC (2003) From anchovies to sardines and back: multidecadal change in the Pacific ocean. Science 299:217

    Article  ADS  Google Scholar 

  8. Polovina JJ (2005) Climate variation, regime shifts, and implications for sustainable fisheries. Bull Mar Sci 76(2):233–244

    Google Scholar 

  9. Epstein PR (1999) Climate and health. Perspective. Science 285(5426):347–348. doi:10.1126/science.285.5426.347

    Article  Google Scholar 

  10. Zirino A, Fiedler PC, Keir RS (1988) Surface pH, satellite imagery, and vertical models in the tropical ocean. Sci Total Environ 75:285–300

    Article  Google Scholar 

  11. Dube C, Lamarche A, Alfoldi T (1989) Resultats preliminaires d’une methode d’evaluation de la dispersion des rejets des eaux usees dans le Fleuve Saint-Laurent par teledetection. In: IGARSS proceedings: quantitative remote sensing: an economic tool for the nineties, 12th Canadian symposium on remote sensing, IEEE, Vancouver, Canada, vol 5: pp2820–2824

    Google Scholar 

  12. Gordon HR, McCluney WR (1975) Estimation of the depth of sunlight penetration in the sea for remote sensing. Appl Opt 14:413–416

    Article  ADS  Google Scholar 

  13. Boyd JD, Myrick RK, Linzell RS (1991) Isis: a portable system for near real time oceanographic analysis. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):28

    Google Scholar 

  14. Frye DE, Fougere A, Kery S (1991) Prototype expendable surface mooring with inductive telemetry. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):29

    Google Scholar 

  15. OSB (Ocean Studies Board) (2003) Enabling ocean research in the 21st century: implementation of a network of ocean observatories. National Research Council. The National Academies Press, Washington, DC, 221p

    Google Scholar 

  16. Walt D, Urban E (1991) Chemical measurement technologies for ocean science. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):28

    Google Scholar 

  17. Whitledge TE, Liljestrand HM (1991) In situ nitrate analyzer: design, development and field results. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):27

    Google Scholar 

  18. Johnson KS, Needoba JA, Riser SC, Showers WJ (2007) Chemical sensor networks for the aquatic environment. Am Chem Soc. doi:10.1021/cr050354e

    Google Scholar 

  19. Honda MC, Watanabe S (2007) Utility of an automatic water sampler to observe seasonal variability in nutrients and DIC in the northwestern North Pacific. J Oceanogr 63:349–362

    Article  Google Scholar 

  20. McPhaden MJ, Milburn HB (1991) Moored precipitation measurements. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):27

    Google Scholar 

  21. Serra YL, McPhaden MJ (2004) In situ observations of diurnal variability in rainfall over the tropical Pacific and Atlantic oceans. J Climate 17:3496–3509

    Article  ADS  Google Scholar 

  22. Case JF, Widder EA (1991) HIDEX-type bioluminescence detectors: modifications for moored and towed use. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):30

    Google Scholar 

  23. Lapota D, Geiger ML, Lavoie DM, Bernstein SH, Case JF (1991) Measurements of planktonic bioluminescence in Vestfjord, Norway using HIDEX, a new rapid profiling bathyphotometer. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):30

    Google Scholar 

  24. Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328(5979):704–708

    Article  ADS  Google Scholar 

  25. Jaffe JS (1991) Three dimensional sonar sensing of underwater animals. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):28

    Google Scholar 

  26. Macaulay MC (1991) Applications of hydroacoustic technology to the study of zooplankton and micronekton in open ocean and shallow water environments. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):28

    Google Scholar 

  27. Remsen AW (2008) Evolution and field application of a plankton imaging system. Ph.D. dissertation, University of South Florida, 145p

    Google Scholar 

  28. Smith RC, Waters KJ, Baker KS (1991) Optical variability and pigment biomass in the Sargasso Sea as determined using deep-sea optical mooring data. J Geophys Res 96(C5):8665–8686

    Article  ADS  Google Scholar 

  29. Dickey T, Marra J, Granata T, Langdon C, Hamilton M, Wiggert J, Siegel D, Bratkovich A (1991) Concurrent high resolution bio-optical and physical time series observations in the Sargasso Sea during the spring of 1987. J Geophys Res 96(C5):8643–8663

    Article  ADS  Google Scholar 

  30. Boss E, Behrenfeld M (2010) In situ evaluation of the initiation of the North Atlantic phytoplankton bloom. Geophys Res Lett 37(L18603):5

    Google Scholar 

  31. Dickey TD, Itsweire EC, Moline MA, Perry MJ (2008) Introduction to the limnology and oceanography special issue on autonomous and lagrangian platforms and sensors (ALPS). Limnol Oceanogr 53(5, part 2):2057–2061

    Article  Google Scholar 

  32. Esaias WE (1980) Remote sensing of oceanic phytoplankton: present capabilities and future goals. In: Falkowski PG (ed) Primary productivity in the sea. Plenum, New York, pp 321–337

    Chapter  Google Scholar 

  33. Freilich MH (2010) NASA Earth science activities related to the deepwater horizon oil spill. American Geophysical Union, Fall Meeting 2010, Abstract #U14A-02

    Google Scholar 

  34. Zielinski O, Busch JA, Cembella AD, Daly KL, Engelbrektsson J, Hannides AK, Schmidt H (2009) Detecting marine hazardous substances and organisms: sensors for pollutants, toxins, and pathogens. Ocean Sci Discuss 6:953–1005. www.ocean-sci-discuss.net/6/953/2009/

    Article  ADS  Google Scholar 

  35. Chomko RM, Gordon HR (2001) Atmospheric correction of ocean color imagery: test of the spectral optimization algorithm with the sea-viewing wide field-of-view sensor. Appl Opt 40:2973–2984

    Article  ADS  Google Scholar 

  36. Chomko RM, Gordon HR, Maritorena S, Siegel DA (2003) Simultaneous retrieval of oceanic and atmospheric parameters for ocean color imagery by spectral optimization: a validation. Remote Sens Environ 84:208–220

    Article  Google Scholar 

  37. Hovis WA, Clark DK, Anderson F, Austin RW, Wilson WH, Baker ET, Ball D, Gordon HR, Mueller JL, El-Sayed SZ, Sturm B, Wrigley RC, Yentsch CS (1980) Nimbus-7 coastal zone color scanner: system description and initial imagery. Science 210:60–63

    Article  ADS  Google Scholar 

  38. Feldman G, Kuring N, Ng C, Esaias WE, McClain C, Elrod J, Maynard N, Endres D, Evans R, Brown J, Walsh S, Carle M, Podesta G (1989) Ocean color, availability of the global data set. The oceanography report. EOS 70(23):634

    Article  ADS  Google Scholar 

  39. Barale V, Rizzoli PM, Hendershott MC (1984) Remotely sensing the surface dynamics of the Adriatic Sea. Deep Sea Res 31(12):1433–1459

    Article  Google Scholar 

  40. Barale V, McClain CR, Rizzoli PM (1986) Space and time variability of the surface color field in the northern Adriatic Sea. J Geophys Res 91(C11):12957–12974

    Article  ADS  Google Scholar 

  41. Bergamasco A, Barale V (1988) Comparison between coastal runoffs patterns from CZCS imagery and from a general circulation model. In: Marani A (ed) Advances in environmental modelling. Elsevier, Amsterdam, pp 395–404

    Google Scholar 

  42. Holligan PM, Aarup T, Groom SB (1989) The North Sea satellite colour atlas. Cont Shelf Res 9(8):667–765

    Article  ADS  Google Scholar 

  43. Muller-Karger FE, McClain CR, Richardson PL (1988) The dispersal of the Amazon’s water. Nature 333:56–59

    Article  ADS  Google Scholar 

  44. Muller-Karger FE, McClain CR, Fisher TR, Esaias WE, Varela R (1989) Pigment distribution in the Caribbean Sea: observations from space. Prog Oceanogr 23:23–69

    Article  ADS  Google Scholar 

  45. Müller-Karger FE, Walsh JJ, Evans RH, Meyers MB (1991) On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites. J Geophys Res 96(C7):12645–12665

    Article  ADS  Google Scholar 

  46. Del Castillo C, Gilbes F, Coble P, Muller-Karger FE (2000) On the dispersal of riverine colored dissolved organic matter over the West Florida Shelf. Limnol Oceanogr 45(6):1425–1432

    Article  Google Scholar 

  47. IOCCG (2000) Remote sensing of ocean colour in coastal, and other optically-complex waters. In: Sathyendranath S (ed) International Ocean-Colour Coordinating Group, No.3: general introduction. International Ocean-Colour Coordinating Group (IOCCG) Report, pp 5–22

    Google Scholar 

  48. Abbott M, Letelier R (1999) Chlorophyll fluorescence (MODIS Product No. 20). Algorithm theoretical basis document. http://modis.gsfc.nasa.gov/data/atbd/atbd_mod22.pdf. Accessed 11 October 2011

  49. SWFDOG (2002) Satellite images track ‘black water’ event off Florida coast. EOS Trans AGU 83(281):285

    ADS  Google Scholar 

  50. Hu C, Hackett KE, Callahan MK, Andréfouët S, Wheaton JL, Porter JW, Muller-Karger FE (2003) The 2002 ocean color anomaly in the Florida Bight: a cause of local coral reef decline? Geophys Res Lett 30(3):1151. doi: 10.1029/2002GL016479

    Article  ADS  Google Scholar 

  51. Hu C, Muller-Karger FE, Taylor C, Myhre D, Murch B, Odriozola AL, Godoy G (2003) MODIS detects oil spills in Lake Maracaibo, Venezuela. Eos Trans Am Geophys Union 84(33):313–319

    Article  ADS  Google Scholar 

  52. Gordon HR, Clark DK, Brown JW, Brown OB, Evans RH, Broenkow WW (1983) Phytoplankton concentrations in the Middle Atlantic Bight: comparison ship determinations and CZCS estimates. Appl Opt 22:20–35

    Article  ADS  Google Scholar 

  53. O’Reilly JE et al (2000) Ocean chlorophyll-a algorithms for SeaWiFS, OC2 and OC4: Version 4. In: Hooker SB, Firestone ER (eds) SeaWiFS postlaunch calibration and validation analyses, Part 3. NASA Tech. Memo. 2000–206892, vol 11. NASA Goddard Space Flight Center, Greenbelt, pp 9–23

    Google Scholar 

  54. Carder KL, Chen FR, Lee ZP, Hawes S, Kamykowski D (1999) Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. J Geophys Res 104(C3):5403–5421

    Article  ADS  Google Scholar 

  55. Hu C, Lee ZP, Muller-Karger FE, Carder KL (2002) Application of an optimization algorithm to satellite ocean color imagery: a case study in Southwest Florida coastal waters. In: Frouin RJ, Yuan Y, Kawamura H (eds) Ocean remote sensing and applications: SPIE proceedings, Washington, USA, vol 4892, pp 70–79

    Google Scholar 

  56. Maritorena S, Siegel DA, Peterson AR (2002) Optimization of a semianalytical ocean color model for global-scale applications. Appl Opt 41:2705–2714

    Article  ADS  Google Scholar 

  57. Lee Z, Carder KL, Arnone RA (2002) Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Opt 41:5755–5772

    Article  ADS  Google Scholar 

  58. Morel A, Gentili B (2009) A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens Environ 113:998–1011

    Article  Google Scholar 

  59. Siegel DA, Maritorena S, Nelson NB, Behrenfeld MJ (2005) Independence and interdependencies of global ocean color properties: re-assessing the bio-optical assumption. J Geophys Res 110:C07011. doi:10.1029/2004JC002527

    Article  Google Scholar 

  60. Chen Z, Muller-Karger FE, Hu C (2007) Remote sensing of water clarity in Tampa Bay. Remote Sens Environ. doi: 10.1016/j.rse.2007.01.002

    Google Scholar 

  61. Stumpf RP (2001) Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms. Hum Ecol Risk Assess 7:1363–1368

    Article  Google Scholar 

  62. Hu C, Muller-Karger FE, Taylor C, Carder KL, Kelble C, Johns E, Heil CA (2005) Red tide detection and tracing using MODIS fluorescence data: a regional example in SW Florida coastal waters. Remote Sens Environ 97:311–321

    Article  Google Scholar 

  63. Hu C, Cannizzaro J, Carder KL, Muller-Karger FE, Hardy R (2010) Remote detection of Trichodesmium blooms in optically complex coastal waters: examples with MODIS full-spectral data. Remote Sens Environ 114(9):2048–2058. doi: 10.1016/j.rse.2010.04.011

    Article  Google Scholar 

  64. Hu C, Li D, Chen C, Ge J, Muller-Karger FE, Liu J, Yu F, He M-X (2010) On the recurrent Ulva prolifera blooms in the Yellow Sea and East China Sea. J Geophys Res 115(C5). doi:10.1029/2009JC005561

    Google Scholar 

  65. Zhang H (2002) Detecting red tides on the West Florida shelf by classification of SeaWiFS satellite imagery. Master’s thesis, Department of Computer Science and Engineering, University of South Florida

    Google Scholar 

  66. Cannizzaro et al (2004) Bio-optical signatures of red tides on the west Florida shelf. Cont Shelf Res 28(1):137–158

    Google Scholar 

  67. Miller RL, McKee BA (2004) Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens Environ 93(2004):259–266

    Article  Google Scholar 

  68. Chen Z, Hu C, Conmy RN, Swarzenski P, Muller-Karger F (2007) Colored dissolved organic matter in Tampa Bay, Florida. Mar Chem 104:98–109

    Article  Google Scholar 

  69. Chen Z, Hu C, Muller-Karger FE (2007) Monitoring turbidity in Tampa Bay using MODIS 250 M imagery. Remote Sens Environ. doi:10.1016/j.rse.2006.12.019

    Google Scholar 

  70. Moreno MJ, Al-Hamdan M, Rickman D, Muller-Karger FE (2010) Using the surface reflectance MODIS terra product to estimate turbidity in Tampa Bay, Florida. Remote Sens 2(12):2713–2728. doi:10.3390/rs2122713

    Article  Google Scholar 

  71. Doxaran D, Froidefond J-M, Castaing P, Babin M (2009) Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): observations from field and MODIS satellite data. Estuar Coast Shelf Sci 81:321–332

    Article  ADS  Google Scholar 

  72. Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque ASG, Colwell R (2000) Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci USA 97(4):1438–1443

    Article  ADS  Google Scholar 

  73. Colwell RR (2005) Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031

    Article  ADS  Google Scholar 

  74. Hu W, Clements A, Williams G, Tong S (2010) Dengue fever and El Niño/Southern Oscillation in Queensland, Australia: a time series predictive model. Occup Environ Med 67:307–311. doi:10.1136/oem.2008.044966

    Article  Google Scholar 

  75. Gagliardini DA, Karszenbaum H, Legeckis R, Klemas V (1984) Application of LANDSAT MSS, NOAA/TIROS AVHRR, and Nimbus CZCS to study the La Plata River and its interaction with the ocean. Remote Sens Environ 15:21–36

    Article  Google Scholar 

  76. Stumpf RP, Tyler MA (1988) Satellite detection of bloom and pigment distributions in estuaries. Remote Sens Environ 24:385–404

    Article  Google Scholar 

  77. Froidefond JM, Castaing P, Jouanneau JM, Prud’Homme R, Dinet A (1993) Method for the quantification of suspended sediments from AVHRR NOAA-11 satellite data. Int J Remote Sens 14(5):885–894

    Article  Google Scholar 

  78. Maul GA (1985) Introduction to satellite oceanography. Martinus Nijhoff, Dordrecht/Boston, 606p

    Book  Google Scholar 

  79. Maul GA, Gordon HR (1975) On the use of the Earth resources technology satellite (LANDSAT-1) in optical oceanography. Remote Sens Environ 4:95–128

    Article  Google Scholar 

  80. Amos CL, Alfoldi TT (1979) The determination of suspended sediment concentration in a macrotidal system using Landsat data. J Sediment Petrol 49:159–174

    Google Scholar 

  81. Khorram S (1981) Water quality mapping from Landsat digital data. Int J Rem Sens 2(2):145–153

    Article  Google Scholar 

  82. Dwivedi RM, Narain A (1987) Remote sensing of phytoplankton: An attempt from the landsat thematic mapper. Int J Remote Sens 8(10):1563–1569

    Article  Google Scholar 

  83. Braga CZF, Setzer AW, Drude de Lacerda L (1993) Water quality assessment with simultaneous Landsat-5 TM data at Guanabara Bay, Rio de Janeiro, Brazil. Remote Sens Environ 45:95–106

    Article  Google Scholar 

  84. Tassan S (1987) Evaluation of the potential of the tematic mapper for marine application. Int J Remote Sens 8(10):1455–1478

    Article  Google Scholar 

  85. Tassan S (1993) An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from thematic mapper data in coastal waters. Int J Remote Sens 14(6):1221–1229

    Article  Google Scholar 

  86. Khorram S, Cheshire H, Geraci AL, La Rosa G (1989) IGARSS proceedings: quantitative remote sensing: an economic tool for the nineties, 12th Canadian symposium on remote sensing, IEEE, Vancouver, Canada, vol 1, pp 335–338

    Google Scholar 

  87. Catts GP, Khorram S, Cloern JE, Knight AW, DeGloria SD (1985) Remote sensing of tidal chlorophyll a variations in estuaries. Int J Remote Sens 6(11):1685–1706

    Article  Google Scholar 

  88. Munday JC, Fedosh MS (1981) Chesapeake Bay plume dynamics from Landsat. In: Campbell JW, Thomas JP (eds) Superflux: Chesapeake Bay plume study, NASA Conference Publ 2188. NASA, Greenbelt

    Google Scholar 

  89. Munday JC, Alfoldi TT (1979) Landsat test of diffuse reflectance models for aquatic suspended solids measurement. Remote Sens Environ 8:169–183

    Article  Google Scholar 

  90. Hellweger FL, Miller W, Oshodi KS (2007) Mapping turbidity in the Charles River, Boston using a high-resolution satellite. Environ Monit Assess 132(1–3):311–320, Epub 14 Dec 2006

    Article  Google Scholar 

  91. Sorensen K, Nilsen J, Saebo HV, Holbaek-Hanssen E (1989a) Use of thematic mapper data for mapping of water quality. In: IGARSS proceedings: quantitative remote sensing: an economic tool for the nineties, 12th Canadian symposium on remote sensing, IEEE, Vancouver, Canada, vol 2, p 696

    Google Scholar 

  92. Sorensen K, Lindell T, Nisell J (1989b) The information content of AVHRR, MSS, TM, and SPOT data in the Skagerrak Sea. In: IGARSS proceedings: quantitative remote sensing: an economic tool for the nineties, 12th Canadian symposium on remote sensing, IEEE, Vancouver, Canada, vol 4, pp 2439–2442

    Google Scholar 

  93. Lee Z, Carder KL, Mobley CD, Steward RG, Patch JS (1999) Hyperspectral remote sensing for shallow waters. II. Deriving bottom depths and water properties by optimization. Appl Opt 38:3831–3843

    Article  ADS  Google Scholar 

  94. Brando VE, Dekker AG (2003) Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality. IEEE Trans Geosci Remote Sens 41(6):1378–1387

    Article  ADS  Google Scholar 

  95. Corson MR, Korwan DR, Lucke RL, Snyder WA, Davis CO (2008) The hyperspectral imager for the coastal ocean (HICO) on the international space station. In: IEEE proceedings of the international geoscience and remote sensing symposium, Boston, USA, 978-1-4244-2808-3/08

    Google Scholar 

  96. Vane G, Chrisp M, Enmark H, Macenka S, Solomon J (1984a) Airborne visible/infrared imaging spectrometer: an advanced tool for earth remote sensing. In: IGARSS ’84, Strasbourg, France, SP215, p 751

    Google Scholar 

  97. Vane G, Goetz AFH, Wellman JB (1984) Airborne imaging spectrometer: a new tool for remote sensing. IEEE Trans Geosci Remote Sens GE-22:546

    Google Scholar 

  98. Goetz AF (1987) High-resolution imaging spectrometer: science opportunities for the 1990s. NASA Earth observing system report: instrument panel report, vol IIc, 74p

    Google Scholar 

  99. Karaska MA, Huguenin RL, Beacham JL, Wang Mo-Hwa, Jensen JR, Kaufmann RS (2004) AVIRIS measurements of chlorophyll, suspended minerals, dissolved organic carbon, and turbidity in the Neuse River, North Carolina. Photogramm Eng Remote Sensing 70(1):125–133

    Google Scholar 

  100. Bagheri S, Yu T (2008) Hyperspectral sensing for assessing nearshore water quality conditions of Hudson/Raritan estuary. J Environ Inf 11(2):123–130. doi:10.3808/jei.200800116

    Article  Google Scholar 

  101. Gower JFR, Buxton RAH, Borstad GA (1989) The FLI airborne imaging spectrometer: experience with land and water targets. In: IGARSS proceedings: quantitative remote sensing: an economic tool for the nineties, 12th Canadian symposium on remote sensing, IEEE, Vancouver, Canada, vol 2, pp 1024–102

    Google Scholar 

  102. Dekker AG, Malthus TJ, Seyhan E (2002) Quantitative modelling of inland water quality for high resolution MSS-systems. Geosci Remote Sens IEEE Trans 29(1):89–95

    Article  ADS  Google Scholar 

  103. Babey SK, Anger CD (1989) A compact airborne spectrographic imager (CASI). In: IGARSS proceedings: quantitative remote sensing: an economic tool for the nineties, 12th Canadian symposium on remote sensing, IEEE, Vancouver, Canada, vol 2, p 1028–1031

    Google Scholar 

  104. Ammenberg P, Flink P, Lindell T, Pierson D, Strombeck N (2002) Bio-optical modelling combined with remote sensing to assess water quality. Int J Remote Sens 23(8):1621–1638

    Article  Google Scholar 

  105. Hengstermann T, Reuter R (1990) Lidar fluorosensing of mineral oil spills on the sea surface. Appl Opt 29(22):3218–3227

    Article  ADS  Google Scholar 

  106. Hoge FE, Swift RN (1980) Application of the NASA airborne oceanographic lidar to the mapping of chlorophyll and other organic pigments. In: Campbell JW, Thomas JP (eds) Superflux: Chesapeake Bay Plume Study, Conference Publ. 2188. NASA, Greenbelt, pp 349–374

    Google Scholar 

  107. Hoge FE, Swift RN (1983) Airborne detection of oceanic turbidity cell structure using depth-resolved laser-induced water Raman backscatter. Appl Opt 23:3778–3786

    Article  ADS  Google Scholar 

  108. Brekke C, Solberg AHS (2005) Oil spill detection by satellite remote sensing. Remote Sens Environ 95:1–13

    Article  Google Scholar 

  109. Garcia-Pineda O, MacDonald I, Zimmer B, Shedd B, Roberts H (2010) Remote-sensing evaluation of geophysical anomaly sites in the outer continental slope, northern Gulf of Mexico. Deep Sea Res Part 2 Top Stud Oceanogr 57:1859–1869

    Article  Google Scholar 

  110. Korenowski GM, Frysinger GS, Asher WE, Barger WR, Klusty MA (1989) Laser based optical measurement of organic surfactant concentration variations a te air/sea interface. In: IGARSS proceedings: quantitative remote sensing: an economic tool for the nineties, 12th Canadian symposium on remote sensing, IEEE, Vancouver, Canada, vol 3, pp 1506–1509

    Google Scholar 

  111. Hoge FE, Swift RN (1980) Oil film thickness measurement using airborne laser-induced water Raman backscatter. Appl Opt 19(19):3269–3281

    Article  ADS  Google Scholar 

  112. Hoge FE, Swift RN (1983) Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency. Appl Opt 22(1):37–47

    Article  ADS  Google Scholar 

  113. Hoge F, Swift RN (1982) Delineation of estuarine fronts in the German Bight using airborne laser-induced water Raman backscatter and fluorescence of water column constituents. Int J Remote Sens 3:475–495

    Article  Google Scholar 

  114. Vodacek A (1989) Synchronous fluorescence spectroscopy of dissolved organic matter to optimize lidar detection parameters. In: IGARSS proceedings: quantitative remote sensing: an economic tool for the nineties, 12th Canadian symposium on remote sensing, IEEE, Vancouver, Canada, vol 2, pp 1046–1049

    Google Scholar 

  115. Duncan ME, Ackleson SG (1991) A summary of hand-held photography of the Persian Gulf area taken during space shuttle missions: 1981–1991. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):40

    Google Scholar 

  116. Raney RK (1983) The Canadian SAR experience, Chapter 13. In: Allan TD (ed) Satellite microwave sensing. Wiley, Tornoto, pp 223–234

    Google Scholar 

  117. Wadsworth A, Robertson C, De Staerke D (1983) Use of SEASAT-SAR data in oceanography at the IFP, Chapter 14. In: Allan TD (ed) Satellite microwave sensing. Ellis Horwood Ltd, Chichester pp 235–245

    Google Scholar 

  118. Tucker C, Holben B, Elgin J, McMurtrey J (1989) Relationship of spectral data to grain yield variation. Photogramm Eng Remote Sensing 46(5):657–666

    Google Scholar 

  119. Tucker CJ, Sellers PJ (1986) Satellite remote sensing of primary production. Int J Remote Sens 7:1395–1416

    Article  Google Scholar 

  120. Hu C, Muller-Karger F, Murch B, Myhre D, Taylor J, Luerssen R, Moses C, Zhang C, Gramer L, Hendee J (2009) Building an automated integrated observing system to detect sea surface temperature anomaly events in the Florida Keys. IEEE Trans Geosci Remote Sens 47(6):1607–1620

    Article  ADS  Google Scholar 

  121. Barnes BB, Chuanmin Hu, Muller-Karger F (2011) An improved high-resolution SST climatology to assess cold water events off Florida. Geosci Remote Sens Lett 8:769, (Accepted Jan 2011)

    Article  ADS  Google Scholar 

  122. Soto I (2006) Environmental variability in the Florida keys: impacts on coral reef health. Master’s thesis, University of South Florida, College of Marine Science

    Google Scholar 

  123. Eakin CM, Nim CJ, Brainard RE, Aubrecht C, Elvidge C, Gledhill DK, Muller-Karger F, Mumby PJ, Skirving WJ, Strong AE, Wang M, Weeks S, Wentz F, Ziskin D (2010) Monitoring coral reefs from space. Oceanogr Soc Mag, special volume: The future of oceanography from space, Dec 2010, pp 119–133

    Google Scholar 

  124. Thomas A, Byrne D, Weatherbee R (2002) Coastal sea surface temperature variability from Landsat infrared data. Remote Sens Environ 81:262–272

    Article  Google Scholar 

  125. Fisher JI, Mustard JF (2004) High spatial resolution sea surface climatology from Landsat thermal infrared data. Remote Sens Environ 90:293–307

    Article  Google Scholar 

  126. Lagerloef GSE, Swift CT, Levine DM (1991) Remote sensing of sea surface salinity: airborne and satellite concepts. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):29

    Google Scholar 

  127. Wagner CA, Cheney RE (1992) Global sea level change from satellite altimetry. J Geophys Res 97(C10):15607–15615. doi:10.1029/92JC01641

    Article  ADS  Google Scholar 

  128. Merrifield MA, Merrifield ST, Mitchum GT (2010) Evidence for anomalous recent acceleration of global sea level rise. J Climate 22:5772–5781

    Article  ADS  Google Scholar 

  129. Bindoff NL, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quéré C, Levitus S, Nojiri Y, Shum CK, Talley LD, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  130. Emery WJ, Strub T, Leben R, Foreman M, McWilliams JC, Han G, Ladd C, Ueno H (2010) Satellite altimetry applications off the coasts of North America. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer Verlag, Germany, pp 417–451. doi:10.1007/978-3-642-12796-0_16

    Google Scholar 

  131. Hwang PA, Teague WJ, Jacobs GA, Wang DW (1998) A statistical comparison of wind speed, wave height and wave period derived from satellite altimeters and ocean buoys in the Gulf of Mexico Region. J Geophys Res 103:10451–10468

    Article  ADS  Google Scholar 

  132. Hwang PA, Walsh EJ, Krabill WB, Swift RN, Manizade SS, Scott JF, Earle MD (1998) Airborne remote sensing applications to coastal wave research. J Geophys Res 103:18791–18800

    Article  ADS  Google Scholar 

  133. Bidlot J-R, Holmes DJ, Wittmann PA, Lalbeharry R, Chen HS (2002) Intercomparison of the performance of operational ocean wave forecasting systems with buoy data. Weather Forecasting 17:287–310. doi:10.1175/1520-0434(2002) 01<0287:IOTPOO>2.0.CO;2

    Article  ADS  Google Scholar 

  134. Swift CT (1990) Passive microwave remote sensing of ocean surface wind speed. In: Geernaert GL, Plant WJ (eds) Surface waves and fluxes, vol 2. Kluwer Academic, Dordrecht, pp 265–292

    Chapter  Google Scholar 

  135. Abbott MR, Chelton DB (1991) Advances in passive remote sensing of the ocean. Contributions in Oceanography. U.S. National Report to International Union of Geodesy and Gophysics 1987–1990. American Geophysical Union, p 571–589

    Google Scholar 

  136. Guymer TH (1983) Validation and applications of SASS over JASIN, Chapter 5. In: Allan TD (ed) Satellite microwave sensing. Wiley, Toronto, pp 87–104

    Google Scholar 

  137. NRC (2007) Earth science and applications from space: national imperatives for the next decade and beyond. Committee on Earth science and applications from space: a community assessment and strategy for the future. National Research Council, p 456. ISBN: 978-0-309-10387-9

    Google Scholar 

  138. Chadwick DB, Lieberman SH, Reimers CE (1991) In-situ release rate measurements of contaminants from marine sediments. In: Abstract, EOS Supplement, AGU 1992 Ocean sciences meeting, New Orleans 72(51):29

    Google Scholar 

  139. Esaias W (1986) MODIS – moderate resolution imaging spectrometer. NASA Earth observing system instrument panel report, vol IIb, 59p

    Google Scholar 

  140. Huang WG, Lou XL (2003) AVHRR detection of red tides with neural networks. Int J Remote Sens 24:1991–1996

    Article  Google Scholar 

  141. Muller-Karger FE, Hu C, Andréfouët S, Varela R (2005) The color of the coastal ocean and applications in the solution of research and management problems. In: Miller RL, Del Castillo CE, McKee BA (eds) Remote sensing of coastal aquatic environments: technologies, techniques and application. Springer, Dordrecht, pp 101–127

    Chapter  Google Scholar 

  142. Nerem RS, Leuliette E, Cazenave A (2006) Present-day sea-level change: a review. Comptes Rendus Geoscience 338:1077–1083

    Article  ADS  Google Scholar 

  143. Stumpf RP (1988) Sediment transport in chesapeake bay during floods: analysis using satellite and surface observations. J Coast Res 4(1):1–15

    Google Scholar 

  144. McClain, Charles R, Cleave ML, Feldman GC, Gregg WW, Hooker SB, Kuring N (1998) Science quality seaWiFS data for global biosphere research. Sea Technology. September 1998, pages 10–16

    Google Scholar 

  145. Rodríguez-Guzmán V, Gilbes F (2009) Estimating total suspended sediments in tropical open bay conditions using MODIS. In: Proceedings of the 8th WSEAS International Conference on Instrumentation, Measurement, Circuits and Systems, Hangzhou, China, May 20–22, 2009, pp 83–86

    Google Scholar 

  146. Gallegos SC, Gray TI, Crawford MM (1989) A study into the responses of the NOAA-n AVHRR reflective channels over water targets. In: Proceedings of the 1989 IEEE IGARSS Meeting, Vancouver, BC

    Google Scholar 

  147. Stumpf RP, Pennock JR (1991) Remote estimation of the diffuse attenuaton coefficient in a moderately turbid estuary. Rem. Sens. Environ. 38:183–191

    Google Scholar 

  148. Fingas MF, Brown CE (1997) Airborne oil spill remote sensors - do they have a future. In: Proceedings of the Third International Airborne Remote Sensing Conference and Exhibition, Environmental Research Institute of Michigan (ERIM), Ann Arbor, MI, pp I 715–722

    Google Scholar 

  149. Fingas MF, Brown CE (2000) Review of oil spill remote sensing. In: proceedings of the Sixth International Conference on Remote Sensing for Marine and Coastal Environments, Veridian ERIM International, Ann Arbor, MI, pp I211–218

    Google Scholar 

  150. Stumpf RP, Pennock JR (1989) Calibration of a general optical equation for remote sensing of suspended sediments in a moderately turbid estuary. J Geophys Res 94(C10):14363–14371

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank E. Muller-Karger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Muller-Karger, F.E. (2013). Remote Sensing Applications to Ocean and Human Health. In: Orcutt, J. (eds) Earth System Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5684-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5684-1_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5683-4

  • Online ISBN: 978-1-4614-5684-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics