Skip to main content

Large-Scale Ocean Circulation: Deep Circulation and Meridional Overturning

  • Chapter
  • First Online:

Abstract

Roughly half the world ocean volume lies below 2,000m depth. This deep half of the ocean is cold (<3°C), indicating that the abyssal ocean is filled with waters that sink in high latitudes, where cold surface waters are found [1]. The deep ocean circulation transports the cold waters that sink in the polar regions throughout the deep ocean basins. The transfer of surface water to the deep ocean must be balanced by an inflow of water in the upper ocean to the deep water formation regions, to conserve mass. The result is an “overturning circulation,” in which the export of cold deep waters from the source regions is balanced by a return flow of warmer water in the upper ocean. The large temperature contrast between the upper and lower limbs of the overturning circulation makes this flow pattern an efficient means of transporting heat. The large-scale overturning circulation is the primary means by which the ocean stores and transports quantities of relevance to the Earth’s climate system and biogeochemical cycles, including heat, freshwater, carbon, and nutrients. The evolution of climate is therefore influenced strongly by the overturning circulation.

This chapter was originally published as part of the Encyclopedia of Sustainability Science and Technology edited by Robert A. Meyers. DOI:10.1007/978-1-4419-0851-3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Antarctic bottom water:

A dense water mass formed near the Antarctic continental margin that spreads northward to ventilate the abyssal ocean.

Argo floats:

Autonomous profiling floats that drift with ocean currents at 1–2km depth and periodically measure temperature and salinity while rising to the sea surface, where the data is transferred by satellite.

Barotropic:

The depth-independent component of ocean currents. Direct current measurements are needed to determine the barotropic flow.

Baroclinic:

The depth-dependent component of ocean currents. The baroclinic flow can be estimated from measurements of ocean density.

Deep western boundary current:

Strong deep flows intensified along the western boundary of the basins.

Eddy:

The small-scale, time-variable component of the ocean circulation (also mesoscale eddy).

Ekman transport:

Wind-driven transport of the surface layer of the ocean to the right (left) of the wind in the northern (southern) hemisphere.

Geostrophic flow:

The large-scale flow of the oceans is in geostrophic balance, where horizontal pressure gradients are balanced by the Coriolis force.

Glider:

Like an Argo float with wings, an autonomous instrument that varies its buoyancy allowing it to move both vertically and horizontally, measuring water properties.

Hydrographic sections:

Ship transects along which measurements are made of seawater properties (e.g., temperature, salinity, carbon, nutrients).

Meridional:

In the north–south direction.

Meridional overturning circulation:

A basin-integrated view of the net north–south flow in the ocean basins.

North Atlantic deep water:

Deep water formed in high latitudes of the North Atlantic that spreads to the south in a deep western boundary current.

Ocean conveyor belt:

A highly simplified conceptual representation of the large-scale overturning circulation of the oceans.

Overturning circulation:

A global-scale network of ocean currents consisting of sinking of dense water in a small number of deep water formation regions and a compensating return flow of water in the upper ocean.

Potential vorticity:

A property of a fluid related to its rotation rate and stratification, which is approximately conserved by the large-scale ocean circulation. Analogous to angular momentum.

Sverdrup:

A unit of the volume of water carried by ocean currents (1Sv = 106m3 s−1).

Thermohaline circulation:

A term sometimes used as a synonym for the overturning circulation, or more specifically the portion of the overturning circulation driven by exchange of heat and moisture (i.e., thermohaline forcing) at the sea surface.

Ventilation:

The transfer of surface waters to the interior ocean, resulting in renewal of oxygen levels and other properties of the subsurface ocean.

Water mass:

A volume of the ocean with similar water mass properties.

Water mass formation:

The process by which surface water acquires a characteristic set of water mass properties through air–sea interaction, and transfers these properties into the ocean interior when the water mass sinks.

Zonal:

The east–west direction.

Bibliography

Primary literature

  1. Worthington LV (1981) The water masses of the world ocean: some results of a finescale census. In: Warren BA, Wunsch C (eds) Evolution of physical oceanography. MIT Press, Cambridge, MA, pp 43–69

    Google Scholar 

  2. Stommel H (1958) The abyssal circulation. Deep-Sea Res 5:80

    Article  Google Scholar 

  3. Stommel H, Arons AB (1960) On the abyssal circulation of the world ocean–I. Stationary planetary flow patterns on a sphere. Deep-Sea Res 6:140–154

    Google Scholar 

  4. Stommel H, Arons AB (1960) On the abyssal circulation of the world ocean – II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res 6:217–218

    Google Scholar 

  5. Warren BA (1981) Deep circulation of the world ocean. In: Warren BA, Wunsch C (eds) Evolution of physical oceanography. MIT Press, Cambridge, MA, pp 6–41

    Google Scholar 

  6. Swallow JC, Worthington LV (1957) Measurements of deep currents in the western North Atlantic. Nature 179:1183–1184

    Article  ADS  Google Scholar 

  7. Swallow JC, Worthington LV (1961) An observation of a deep countercurrent in the western North Atlantic. Deep-Sea Res 8:1–19

    Article  Google Scholar 

  8. Warren BA (1974) Deep flow in Madagascar and Mascarene basins. Deep-Sea Res 21:1–21

    Google Scholar 

  9. Warren BA (1977) Deep western boundary current in eastern Indian Ocean. Science 196:53–54

    Article  ADS  Google Scholar 

  10. Warren BA (1978) Bottom water transport through Southwest Indian ridge. Deep-Sea Res 25:315–321

    Article  Google Scholar 

  11. Warren BA (1983) Why is no deep water formed in the Pacific? J Mar Res 41:327–347

    Article  Google Scholar 

  12. Wunsch C (2002) What is the thermohaline circulation? Science 298:1179

    Article  Google Scholar 

  13. Broecker WS (1987) The biggest chill. Nat Hist Mag 97:74–82

    Google Scholar 

  14. Broecker WS (1991) The great ocean conveyor. Oceanography 4(2):79–89

    Article  Google Scholar 

  15. Baringer MO, Arndt DS, Johnson MR (2010) State of the climate in 2009. Bull Am Meteorol Soc 91, S1

    Google Scholar 

  16. Levitus S, Antonov J, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi:10.1029/2004GL021592

    Article  Google Scholar 

  17. Purkey SG, Johnson GC (2010) Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea-level rise budgets. J Climate 23:6336–6351

    Google Scholar 

  18. Domingues CM, Church JA, White NJ et al (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090

    Article  ADS  Google Scholar 

  19. Boe J, Hall A, Qu X (2009) Deep ocean heat uptake as a major source of spread in transient climate change simulations. Geophys Res Lett 36:L22701

    Article  ADS  Google Scholar 

  20. Orsi AH, Johnson GC, Bullister JB (1999) Circulation, mixing and production of Antarctic bottom water. Prog Oceanog 43:55–109

    Article  Google Scholar 

  21. Orsi AH, Smethie WM, Bullister JB (2002) On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J Geophys Res C8:3122

    Google Scholar 

  22. Rintoul SR (1998) On the origin and influence of Adelie land bottom water. In: Jacobs S, Weiss R (eds) Ocean, ice and atmosphere: interactions at the Antarctic continental margin, vol 75, Antarctic Research Series. American Geophysical Union, Washington, pp 151–171

    Chapter  Google Scholar 

  23. LeBel DA, Smethie WM, Rhein M et al (2008) The formation rate of North Atlantic deep water and eighteen degree water calculated from CFC-11 inventories observed during WOCE. Deep-Sea Res Part I-Oceanogr Res Pap 55(8):891–910

    Article  ADS  Google Scholar 

  24. Orsi AH, Jacobs SS, Gordon AL et al (2001) Cooling and ventilating the abyssal ocean. Geophys Res Lett 28:2923–2926

    Article  ADS  Google Scholar 

  25. Johnson GC (2008) Quantifying Antarctic bottom water and North Atlantic deep water volumes. J Geophys Res – Oceans 113(C5):C05027

    Article  Google Scholar 

  26. Rintoul SR (2006) Circumpolar deep water. In: Encyclopedia of the Antarctic. Routledge, New York, pp 240–242

    Google Scholar 

  27. Hogg NG (2001) Quantification of the deep circulation. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Academic, San Diego, pp 259–270

    Chapter  Google Scholar 

  28. McCartney MS (1992) Recirculationg components to the deep boundary current of the northern North Atlantic. Prog Oceanogr 29:283–383

    Article  ADS  Google Scholar 

  29. Schmitz WJ, McCartney MS (1993) On the North Atlantic circulation. Rev Geophys 31:29–49

    Article  ADS  Google Scholar 

  30. Crease J (1962) Velocity measurements in deep water of the western North Atlantic – summary. J Geophys Res 67:3173–3176

    Article  ADS  Google Scholar 

  31. Swallow JC (1971) ARIES current measurements in western North Atlantic. Philos Trans R Soc Lond Ser A-Math Phys Sci 270:451–460

    Article  ADS  Google Scholar 

  32. Hogg NG, Owens WB (1999) Direct measurement of the deep circulation within the Brazil Basin. Deep-Sea Res Part II-Top Stud Oceanogr 46(1-2):335–353

    Article  ADS  Google Scholar 

  33. Ledwell JR, Montgomery ET, Polzin KL et al (2000) Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403:179–182

    Article  ADS  Google Scholar 

  34. Maximenko NA, Melnichenko OV, Niiler PP et al (2008) Stationary mesoscale jet-like features in the ocean. Geophys Res Lett 35:L08603

    Article  Google Scholar 

  35. Bryden HL, Imawaki S (2001) Ocean heat transport. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate. Academic, New York, pp 455–474

    Chapter  Google Scholar 

  36. Talley LD (2003) Shallow, intermediate, and deep overturning components of the global heat budget. J Phys Oceanogr 33:530–560

    Article  ADS  Google Scholar 

  37. Talley LD (2008) Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. Prog Oceanogr 78:257–303

    Article  ADS  Google Scholar 

  38. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA Jr, Pierrehumbert RT, Rhines PB, Stocker TF, Talley LD, Wallace JM (2003) Abrupt climate change. Science 299:2005–2010

    Article  ADS  Google Scholar 

  39. Sarmiento JL (2004) High-latitude controls of thermocline nutrients and low biological productivity. Nature 427:56–60

    Article  ADS  Google Scholar 

  40. Schmittner A (2005) Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Science 343:628–633

    Google Scholar 

  41. Le Quéré C et al (2007) Saturation of the southern ocean CO2 sink due to recent climate change. Science 316:1735–1738. doi:10.1126/science.1136188

    Article  ADS  Google Scholar 

  42. Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf F (2008) Response of the Antarctic circumpolar current to recent climate change. Nat Geosci. doi:10.1038/ngeo362

    Google Scholar 

  43. Latif M et al (2010) Dynamics of decadal climate variability and implications for its prediction. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  44. Hurrell J et al (2010) Decadal climate prediction: opportunities and challenges. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  45. Latif M et al (2006) A review of predictability studies of Atlantic sector climate on decadal time scales. J Clim 19:5971–5987

    Article  ADS  Google Scholar 

  46. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic Hurricanes. Geophys Res Lett 33(17). doi:82410.1029/2006GL026267

    Google Scholar 

  47. Latif M (1998) Dynamics of interdecadal variability in coupled ocean-atmosphere models. J Clim 11:602–624

    Article  ADS  Google Scholar 

  48. Bjerknes J (1964) Atlantic air-sea interaction. In: Advances in geophysics, 10th edn. Academic, New York, pp 1–82

    Google Scholar 

  49. Broecker WS, Peng T-H (1982) Tracers in the sea. Eldigio Press, Palisades, p 690

    Google Scholar 

  50. Gordon AL (1986) Interocean exchange of thermocline water. J Geophys Res 91(C4):5037–5046

    Article  ADS  Google Scholar 

  51. Richardson PL (2008) On the history of meridional overturning circulation schematic diagrams. Prog Oceanogr 76:466–486

    Article  ADS  Google Scholar 

  52. Gordon A (1991) The role of thermohaline circulation in global climate change. In: Lamont–Doherty geological observatory 1990 and 1991 report, Lamont–Doherty Geological Observatory of Columbia University, Palisades, pp 44–51

    Google Scholar 

  53. Schmitz WJ Jr. (1996a) On the world ocean circulation: volume I, some global features/North Atlantic circulation. Woods Hole Oceanographic Institution technical report WHOI-96-03, 141 pp

    Google Scholar 

  54. Schmitz WJ Jr. (1996b) On the world ocean circulation: volume II, the pacific and Indian oceans/a global update. Woods Hole Oceanographic Institution technical report WHOI-96-08, 237 pp

    Google Scholar 

  55. Lumpkin R, Speer K (2007) Global ocean meridional overturning. J Phys Oceanogr 37:2550–2562

    Article  ADS  Google Scholar 

  56. Lozier MS (2010) Deconstructing the conveyor belt. Science 328:1507–1511

    Article  ADS  Google Scholar 

  57. Dengler M, Schott FA, Eden C, Brandt P, Fischer J, Zantopp RJ (2004) Break-up of the Atlantic deep western boundary current into eddies at 8° S. Nature 432:1018–1020

    Article  ADS  Google Scholar 

  58. Bower AS, Lozier MS, Gary SF, Böning CW (2009) Interior pathways of the North Atlantic meridional overturning circulation. Nature 459:243–247

    Article  ADS  Google Scholar 

  59. Visbeck M (2007) Oceanography: power of pull. Nature 447:383

    Article  ADS  Google Scholar 

  60. Cunningham S et al (2010) The present and future system for measuring the atlantic meridional overturning circulation and heat transport. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  61. Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5°N. Science 317(5840):935–938. doi: 10.1126/science.1141304

    Article  ADS  Google Scholar 

  62. Kanzow T et al (2007) Flow compensation associated with the OC at 26.5°N in the Atlantic. Science 317:938–941

    Article  ADS  Google Scholar 

  63. Bryden HL, Mujahid A, Cunningham SA, Kanzow T (2009) Adjustment of the basin-scale circulation at 26° N to variations in Gulf stream, deep western boundary current and Ekman transports as observed by the rapid array. Ocean Sci 5:421–433

    Article  ADS  Google Scholar 

  64. Send U et al (2010) A global boundary current circulation observing network. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  65. Send U et al (2002) Monitoring the Atlantic meridional overturning circulation at 16 N. CLIVAR Exchanges 25:31–34

    Google Scholar 

  66. Hirschi J et al (2003) A monitoring design for the Atlantic meridional overturning circulation. Geophys Res Lett 30(7). doi:10.1029/2002GL016776

    Google Scholar 

  67. Baehr J et al (2004) Monitoring the meridional overturning circulation in the North Atlantic: a model-based array design study. J Mar Res 62(3):283–312

    Article  Google Scholar 

  68. Schott FA, Fisher J, Dengler M, Zantopp R (2006) Variability of the deep western boundary current east of the grand banks. Geophys Res Lett 33:L21S07. doi:10.1029/2006GL026563

    Article  Google Scholar 

  69. Bryden HL, Johns WE, Saunders PM (2005) Deep western boundary current east of Abaco: mean structure and transport. J Mar Res 63:35–57

    Article  Google Scholar 

  70. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408(6811):453–457

    Article  ADS  Google Scholar 

  71. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16(4). doi:10.1175/2787.1

    Google Scholar 

  72. Palmer MD, Bryden HL, Hirschi J, Marotzke J (2004) Observed changes in the south indian ocean gyre circulation, 1987–2002. Geophys Res Lett 31:L15303. doi:10.1029/2004GL020506

    Article  ADS  Google Scholar 

  73. Sloyan BM, Rintoul SR (2001) The southern ocean limb of the global deep overturning circulation. J Phys Oceanog 31(1):143–173

    Article  ADS  Google Scholar 

  74. Fukamachi Y, Rintoul SR, Church JA, Aoki S, Sokolov S, Rosenberg M, Wakatsuchi M (2010) Strong export of Antarctic bottom water east of the Kerguelen plateau. Nat Geosci 3:327–331. doi:10.1038/ngeo842

    Article  ADS  Google Scholar 

  75. Whitworth AB, Whitworth T III, Nowlin WD, Pillsbury RD, Moore MI, Weiss RF (1991) Observations of the Antarctic circumpolar current and deep boundary current in the southwest Atlantic. J Geophys Res 96:15105–15118

    Article  ADS  Google Scholar 

  76. Hogg NG, Siedler G, Zenk W (1999) Circulation and variability at the southern boundary of the Brazil basin. J Phys Oceanogr 29:145–157

    Article  ADS  Google Scholar 

  77. Hall MM, McCartney M, Whitehead JA (1997) Antarctic bottom water flux in the equatorial western Atlantic. J Phys Oceanogr 27:1903–1926

    Article  ADS  Google Scholar 

  78. Warren BA, Whitworth T, LaCasce JH (2002) Forced resonant undulation in the deep Mascarene Basin. Deep-Sea Res II 7–8:1513–1526

    Article  Google Scholar 

  79. Sloyan BM (2006) Antarctic bottom and lower circumpolar deep water circulation in the eastern Indian Ocean. J Geophys Res 111:C02006. doi:10.1029/2005JC003011

    Article  Google Scholar 

  80. Whitworth T III, Warren BA, Nowlin WD Jr, Rutz SB, Pillsbury RD, Moore MI (1999) On the deep western-boundary current in the Southwest Pacific basin. Prog Oceanogr 43:1–54

    Article  ADS  Google Scholar 

  81. Rudnick DL (1997) Direct velocity measurements in the Samoan passage. J Geophys Res – Oceans 102:3293–3302

    Article  Google Scholar 

  82. Kawabe M, Yanagimoto D, Kitagawa S (2006) Variations of deep western boundary currents in the Melanesian basin in the western North Pacific. Deep-Sea Res I 53:942–959

    Article  Google Scholar 

  83. Raper SCB, Gregory JM, Stouffer RJ (2002) The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J Clim 15:124–130

    Article  ADS  Google Scholar 

  84. Meehl GA, Washington WM, Collins WD et al (2005) How much more global warming and sea level rise? Science 307:1769–1772

    Article  ADS  Google Scholar 

  85. Johnson GC, Doney SC (2006) Recent western South Atlantic bottom water warming. Geophys Res Lett 33:L14614. doi:10.1029/2006GL026769

    Article  ADS  Google Scholar 

  86. Johnson GC, Purkey SG, Bullister JL (2008) Warming and freshening in the abyssal southeastern Indian Ocean. J Clim 21:5351–5363. doi:10.1175/2008JCLI2384.1

    Article  ADS  Google Scholar 

  87. Johnson GC, Mecking S, Sloyan BM, Wijffels SE (2007) Recent bottom water warming in the Pacific Ocean. J Clim 20:5365–5375. doi:10.1175/2007JCLI1879.1

    Article  ADS  Google Scholar 

  88. Fukasawa M, Freeland H, Perkin R, Watanabe T, Uchida H, Nishina A (2004) Bottom water warming in the North Pacific Ocean. Nature 427:825–827

    Article  ADS  Google Scholar 

  89. Fahrbach E, Hoppema M, Rohardt G, Schröder M, Wisotzki A (2004) Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dyn 54:77–31

    Article  ADS  Google Scholar 

  90. Kawano T et al (2006) Bottom water warming along the pathway of lower circumpolar deep water in the Pacific Ocean. Geophys Res Lett 33:L23613. doi:10.1029/2006GL027933

    Article  ADS  Google Scholar 

  91. Bindoff N, Willebrand J, Artale V, Cazenave A, Gregory J, Gulev S, Hanawa K, Le Quere C, Levitus S, Nojiri Y, Shum CK, Talley L, Unnikrishnan A (2007) Observations: oceanic climate change and sea level. Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 385–432.79

    Google Scholar 

  92. Levitus S, Antonov JI, Wang J, Delworth TL, Dixon KW, Broccoli AJ (2001) Anthropogenic warming of earth’s climate system. Science 292:267–270

    Article  ADS  Google Scholar 

  93. Hansen J, Nazarenko L, Ruedy R, Sato M, Willis J, Del Genio A, Koch D, Lacis A, Lo K, Menon S, Novakov T, Perlwitz J, Russell G, Schmidt GA, Tausnev N (2005) Earth's energy imbalance: confirmation and implications. Science 308:1431–1435

    Article  ADS  Google Scholar 

  94. Masuda S, Awaji T, Sugiura N et al (2010) Simulated rapid warming of abyssal North Pacific waters. Science 329:319–322

    Article  ADS  Google Scholar 

  95. Durack PJ, Wijffels SE (2010) Fifty-Year trends in global ocean salinities and their relationship to broad-scale warming. J Clim 23:4342–4362

    Article  ADS  Google Scholar 

  96. Roemmich D, Gilson J (2009) The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog Oceanogr 82:81–100. doi:10.1016/j.pocean.2009.03.004

    Article  ADS  Google Scholar 

  97. Hosoda S, Sugo T, Shikama N, Mizuno K (2009) Global surface layer salinity change detected by argo and its implication for hydrological cycle intensification. J Oceanogr 65:579–586

    Article  Google Scholar 

  98. Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J (2002) Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature 416:832–837

    Article  ADS  Google Scholar 

  99. Hátún H, Sandø AB, Drange H (2005) Influence of the Atlantic subpolar Gyre on the thermohaline circulation. Science 309:1841–1844

    Article  ADS  Google Scholar 

  100. Häkkinen S, Rhines PB (2004) Decline of subpolar North Atlantic circulation during the 1990s. Science 304:555–559

    Article  ADS  Google Scholar 

  101. Bersch M, Yashayaev I, Koltermann KP (2007) Recent changes of the thermohaline circulation in the subpolar North Atlantic. Ocean Dyn 57:223–235

    Article  ADS  Google Scholar 

  102. Holliday NP, Hughes SL, Bacon S, Beszczynska-Moeller A, Hansen B, Lavın A, Loeng H, Mork KA, Østerhus S, Sherwin T, Walczowski W (2008) Reversal of the 1960s to 1990s freshening trend in the northeast North Atlantic and Nordic Seas. Geophys Res Lett 35:L03614. doi:10.1029/2007GL032675

    Article  Google Scholar 

  103. Sarafanov A, Falina A, Sokov A, Demidov A (2008) Intense warming and salinification of intermediate waters of southern origin in the eastern subpolar North Atlantic in the 1990s to mid-2000s. J Geophys Res 113:C12022. doi:10.1029/2008JC004975

    Article  ADS  Google Scholar 

  104. Hakkinen S, Rhines PB (2009) Shifting surface currents in the northern North Atlantic Ocean. J Geophys Res – Oceans 114:C04005

    Article  Google Scholar 

  105. Sarafanov A, Sokov A, Demidov A, Falina A (2007) Warming and salinification of intermediate and deep waters in the Irminger Sea and Iceland Basin in 1997–2006. Geophys Res Lett 34:L23609. doi:10.1029/2007GL031074

    Article  ADS  Google Scholar 

  106. Yashayaev I (2007) Hydrographic changes in the Labrador Sea, 1960–2005. Prog Oceanogr 73:242–276

    Article  ADS  Google Scholar 

  107. Sarafanov A (2009) On the effect of the North Atlantic Oscillation on temperature and salinity of the subpolar North Atlantic intermediate and deep waters. ICES J Mar Sci 66:1448–1454

    Article  Google Scholar 

  108. Whitworth T III (2002) Two modes of bottom water in the Australian–Antarctic basin. Geophys Res Lett 29(5):1073. doi:10.1029/2001GL014282

    Article  ADS  Google Scholar 

  109. Jacobs SS (2004) Bottom water production and its links with the thermohaline circulation. Antarct Sci 16(4):427–437

    Article  Google Scholar 

  110. Jacobs SS (2006) Observations of change in the Southern Ocean. Philos Trans R Soc A 364:1657–1681. doi:10.1098/rsta.2006.1794

    Article  ADS  Google Scholar 

  111. Aoki S, Bindoff NF, Church JA (2005) Interdecadal water mass changes in the Southern Ocean between 30E and 160E. Geophys Res Lett 32(L07607):1–5, ISSN 0094-8276

    Google Scholar 

  112. Aoki S, Rintoul SR, Ushio S, Watanabe S, Bindoff NL (2005) Freshening of the Adelie land bottom water near 140°E. Geophys Res Lett 32:L23601. doi:10.1029/2005GL024246

    Article  ADS  Google Scholar 

  113. Rintoul SR (2007) Rapid freshening of Antarctic bottom water formed in the Indian and Pacific Oceans. Geophys Res Lett 34:L06606. doi:10.1029/2006GL028550

    Article  Google Scholar 

  114. Jacobs SS, Guilivi CF, Merle P (2002) Freshening of the Ross Sea during the late 20th century. Science 297:386–389

    Article  ADS  Google Scholar 

  115. Rignot E, Jacobs SS (2002) Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 296:2020–2023

    Article  ADS  Google Scholar 

  116. Shepherd A, Wingham D, Rignot E (2004) Warm ocean is eroding West Antarctic ice sheet. Geophys Res Lett 31:L23402. doi:10.1029/2004GL021106

    Article  ADS  Google Scholar 

  117. Heywood KJ, Thompson AE, Fahrbach E, Mackensen A, Aoki S (2009) Cooling and freshening of the Weddell Sea outflow. Geophys Res Abstracts, 11: EGU2009-4336. EGU General Assembly 2009

    Google Scholar 

  118. Rintoul SR et al (2010) Deep circulation and meridional overturning. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 1. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  119. Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 1. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  120. Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  121. Meinen CS, Watts DR, (2000) Vertical structure and transport on a transect across the North Atlantic Current near 428 N. J Geophys Res 105(21869):21891

    Google Scholar 

  122. Hood M et al (2010) Ship-based repeat hydrography: a strategy for a sustained global program. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  123. Dushaw B et al (2010) A global ocean acoustic observing network. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  124. Kieke D et al (2007) Changes in the pool of Labrador Sea water in the subpolar North Atlantic. Geophys Res Lett 34:L06605. doi:10.1029/2006GL028959

    Article  Google Scholar 

  125. Bingham RJ et al (2007) Meridional coherence of the North Atlantic meridional overturning circulation. Geophys Res Lett 34(L23606). doi:10.1029/2007GL031731

    Google Scholar 

  126. Biastoch A et al (2008) Causes of interannual-decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J Clim 21(24):6599–6615

    Article  ADS  Google Scholar 

  127. Baehr J, Stroup A, Marotzke J (2009) Testing concepts for continuous monitoring of the meridional overturning circulation in the South Atlantic. Ocean Model 9:147–153

    Article  ADS  Google Scholar 

  128. Bacon S, Saunders PM (2009) The deep western boundary current at cape farewell: results from a moored current meter array. J Phys Oceanogr 40:815–829

    Article  ADS  Google Scholar 

  129. Garzoli S et al (2010) Progressing towards global sustained deep ocean observations. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  130. Gordon A et al (2010) Interocean exchange of thermocline water: indonesian throughflow; “Tassie” leakage; Agulhas leakage. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  131. Weijer W et al (1999) Impact of interbasin exchange on the Atlantic overturning circulation. J Phys Oceanogr 29:2266–2284

    Article  ADS  Google Scholar 

  132. Caltabiano A (2007) A monitoring system for heat and mass transports in the South Atlantic as a component of the Meridional Overturning Circulation, Estancia San Ceferino, Buenos Aires, Argentina, May 8, 9, and 10, 2007. In: Workshop report. 2007, International CLIVAR Project Office: Southampton, p 38

    Google Scholar 

  133. Rintoul S et al (2010) Southern ocean observing system (SOOS): rationale and strategy for sustained observations of the southern ocean. In: Hall J, Harrison DE, Stammer D eds) Proceedings of OceanObs’09: sustained ocean observations and infomation for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

  134. Send U et al (2010) OceanSITES. In: Hall J, Harrison DE, Stammer D (eds) Proceedings of OceanObs’09: sustained ocean observations and information for society, vol 2. ESA Publication WPP-306, Venice, 21–25 Sept 2009

    Google Scholar 

Books and Reviews

  • Pickard GL, Emery WJ (1990) Descriptive physical oceanography: an introduction, 5th edn. Pergamon, Elsevier Science Ltd., Oxford, U.K. ISBN 008 0379532

    Google Scholar 

  • Siedler G, Church J, Gould J (eds) (2001) Ocean circulation and climate, vol 77, International Geophysics Series. Academic, San Diego

    Google Scholar 

  • Tomczak M, Godfrey JS (2003) Regional oceanography: an introduction, 2nd edn. xi+390p., figs., tabls., ind., 25 cm, Pergamon, Elsevier Science Ltd., Oxford, U.K. ISBN: 8170353068

    Google Scholar 

  • Warren B, Wunsch C (eds) (1981) Evolution of physical oceanography. MIT Press, Cambridge, MA

    Google Scholar 

Download references

Acknowledgments

Many of the ideas presented here were developed as part of a community-wide effort to develop plans for a sustained deep ocean observing system, as input to the OceanObs09 process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Rintoul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rintoul, S.R. (2013). Large-Scale Ocean Circulation: Deep Circulation and Meridional Overturning. In: Orcutt, J. (eds) Earth System Monitoring. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5684-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5684-1_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5683-4

  • Online ISBN: 978-1-4614-5684-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics