Neural and Dural Injury

  • Scott L. Blumenthal
  • Donna D. Ohnmeiss


Various minimally invasive surgery (MIS) approaches have been described for spine surgery including discectomy, decompression, and fusion. While there is enthusiasm for the potential advantages for these procedures, they do carry risks of complications, some similar to traditional open procedures and some relatively unique to MIS approaches. In this chapter, we present information on neural and dural injuries as related to MIS approaches, their occurrence, and strategies described to reduce the risk. It is likely that the risks associated with these procedures have been reduced with experience and changes in techniques as problems have been identified.


Pedicle Screw Minimally Invasive Spine Surgery Total Disc Replacement Transforaminal Lumbar Interbody Fusion Neural Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kambin P, Gellman H. Percutaneous lateral discectomy of the lumbar spine. A preliminary report. Clin Orthop Relat Res. 1983;174:127–32.Google Scholar
  2. 2.
    Hijikata S, Yamagishi M, Nakayama T. Percutaneous discectomy: a new treatment method for lumbar disk herniation. J Toden Hosp. 1975;5:5–13.Google Scholar
  3. 3.
    Obenchain TG. Laparoscopic lumbar discectomy: case report. J Laparoendosc Surg. 1991;1(3):145–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Regan JJ, McAfee PC, Guyer RD, Aronoff RJ. Laparoscopic fusion of the lumbar spine in a multicenter series of the first 34 consecutive patients. Surg Laparosc Endosc. 1996;6(6):459–68.PubMedCrossRefGoogle Scholar
  5. 5.
    Tohmeh AG, Rodgers WB, Peterson MD. Dynamically evoked, discrete-threshold electromyography in the extreme lateral interbody fusion approach. J Neurosurg Spine. 2011;14(1):31–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Moller DJ, Slimack NP, Acosta Jr FL, Koski TR, Fessler RG, Liu JC. Minimally invasive lateral lumbar interbody fusion and transpsoas approach-related morbidity. Neurosurg Focus. 2011;31(4):E4.PubMedCrossRefGoogle Scholar
  7. 7.
    Pumberger M, Hughes AP, Huang RR, Sama AA, Cammisa FP, Girardi FP. Neurologic deficit following lateral lumbar interbody fusion. Eur Spine J. 2012;21(6):1192–9.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Knight RQ, Schwaegler P, Hanscom D, Roh J. Direct lateral lumbar interbody fusion for degenerative conditions: early complication profile. J Spinal Disord Tech. 2009;22(1):34–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Sofianos DA, Briseno MR, Abrams J, Patel AA. Complications of the lateral transpsoas approach for lumbar interbody arthrodesis: a case series and literature review. Clin Orthop Relat Res. 2012;470(6):1621–32.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Hu WK, He SS, Zhang SC, Liu YB, Li M, Hou TS, et al. An MRI study of psoas major and abdominal large vessels with respect to the X/DLIF approach. Eur Spine J. 2011;20(4):557–62.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Dakwar E, Vale FL, Uribe JS. Trajectory of the main sensory and motor branches of the lumbar plexus outside the psoas muscle related to the lateral retroperitoneal transpsoas approach. J Neurosurg Spine. 2011;14(2):290–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Park DK, Lee MJ, Lin EL, Singh K, An HS, Phillips FM. The relationship of intrapsoas nerves during a transpsoas approach to the lumbar spine: anatomic study. J Spinal Disord Tech. 2010;23(4):223–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Benglis DM, Vanni S, Levi AD. An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. J Neurosurg Spine. 2009;10(2):139–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Davis TT, Bae HW, Mok MJ, Rasouli A, Delamarter RB. Lumbar plexus anatomy within the psoas muscle: implications for the transpsoas lateral approach to the L4-L5 disc. J Bone Joint Surg Am. 2011;93(16):1482–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Kepler CK, Bogner EA, Herzog RJ, Huang RC. Anatomy of the psoas muscle and lumbar plexus with respect to the surgical approach for lateral transpsoas interbody fusion. Eur Spine J. 2011;20(4):550–6.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Cummock MD, Vanni S, Levi AD, Yu Y, Wang MY. An analysis of postoperative thigh symptoms after minimally invasive transpsoas lumbar interbody fusion. J Neurosurg Spine. 2011;15(1):11–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Rodgers WB, Gerber EJ, Patterson J. Intraoperative and early postoperative complications in extreme lateral interbody fusion: an analysis of 600 cases. Spine. 2011;36(1):26–32.PubMedCrossRefGoogle Scholar
  18. 18.
    Dakwar E, Le TV, Baaj AA, Le AX, Smith WD, Akbarnia BA, et al. Abdominal wall paresis as a complication of minimally invasive lateral transpsoas interbody fusion. Neurosurg Focus. 2011;31(4):E18.PubMedCrossRefGoogle Scholar
  19. 19.
    Papanastassiou ID, Eleraky M, Vrionis FD. Contralateral femoral nerve compression: an unrecognized complication after extreme lateral interbody fusion (XLIF). J Clin Neurosci. 2011;18(1):149–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Rodgers WB, Cox CS, Gerber EJ. Early complications of extreme lateral interbody fusion in the obese. J Spinal Disord Tech. 2010;23(6):393–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Pimenta L, Oliveira L, Schaffa T, Coutinho E, Marchi L. Lumbar total disc replacement from an extreme lateral approach: clinical experience with a minimum of 2 years’ follow-up. J Neurosurg Spine. 2011;14(1):38–45.PubMedCrossRefGoogle Scholar
  22. 22.
    Pimenta L, Diaz RC, Guerrero LG. Charite lumbar artificial disc retrieval: use of a lateral minimally invasive technique. Technical note. J Neurosurg Spine. 2006;5(6):556–61.PubMedCrossRefGoogle Scholar
  23. 23.
    Wagner WH, Regan JJ, Leary SP, Lanman TH, Johnson JP, Rao RK, et al. Access strategies for revision or explantation of the Charite lumbar artificial disc replacement. J Vasc Surg. 2006;44(6):1266–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Schwender JD, Holly LT, Rouben DP, Foley KT. Minimally invasive transforaminal lumbar interbody fusion (TLIF): technical feasibility and initial results. J Spinal Disord Tech. 2005;18(Suppl):S1–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Hussain NS, Perez-Cruet MJ. Complication management with minimally invasive spine procedures. Neurosurg Focus. 2011;31(4):e2.PubMedCrossRefGoogle Scholar
  26. 26.
    Habib A, Smith ZA, Lawton CD, Fessler RG. Minimally invasive transforaminal lumbar interbody fusion: a perspective on current evidence and clinical knowledge. Minim Invasive Surg. 2012;2012:657342.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Crandall DG, Revella J, Patterson J, Huish E, Chang M, McLemore R. Transforaminal lumbar interbody fusion with rhBMP-2 in spinal deformity, spondylolisthesis and degenerative disease—part 2: BMP dosage related complications and long-term outcomes in 509 patients. Spine. 2013;38:1137–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Joseph V, Rampersaud YR. Heterotopic bone formation with the use of rhBMP2 in posterior minimal access interbody fusion: a CT analysis. Spine. 2007;32(25):2885–90.PubMedCrossRefGoogle Scholar
  29. 29.
    Bindal RK, Ghosh S. Intraoperative electromyography monitoring in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2007;6(2):126–32.PubMedCrossRefGoogle Scholar
  30. 30.
    Archavlis E, Carvi y Nievas M. Comparison of minimally invasive fusion and instrumentation versus open surgery for severe stenotic spondylolisthesis with high-grade facet joint osteoarthritis. Eur Spine J. 2013;22:1731–40.PubMedCrossRefGoogle Scholar
  31. 31.
    Wood M, Mannion R. A comparison of CT-based navigation techniques for minimally invasive lumbar pedicle screw placement. J Spinal Disord Tech. 2011;24(1):E1–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Wood MJ, Mannion RJ. Improving accuracy and reducing radiation exposure in minimally invasive lumbar interbody fusion. J Neurosurg Spine. 2010;12(5):533–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Gautschi OP, Schatlo B, Schaller K, Tessitore E. Clinically relevant complications related to pedicle screw placement in thoracolumbar surgery and their management: a literature review of 35,630 pedicle screws. Neurosurg Focus. 2011;31(4):E8.PubMedCrossRefGoogle Scholar
  34. 34.
    Parker SL, Amin AG, Farber SH, McGirt MJ, Sciubba DM, Wolinsky JP, et al. Ability of electromyographic monitoring to determine the presence of malpositioned pedicle screws in the lumbosacral spine: analysis of 2450 consecutively placed screws. J Neurosurg Spine. 2011;15(2):130–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Garg B, Nagraja UB, Jayaswal A. Microendoscopic versus open discectomy for lumbar disc herniation: a prospective randomised study. J Orthop Surg (Hong Kong). 2011;19(1):30–4.Google Scholar
  36. 36.
    Teli M, Lovi A, Brayda-Bruno M, Zagra A, Corriero A, Giudici F, et al. Higher risk of dural tears and recurrent herniation with lumbar micro-endoscopic discectomy. Eur Spine J. 2010;19(3):443–50.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Ikuta K, Tono O, Tanaka T, Arima J, Nakano S, Sasaki K, et al. Surgical complications of microendoscopic procedures for lumbar spinal stenosis. Minim Invasive Neurosurg. 2007;50(3):145–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Wu X, Zhuang S, Mao Z, Chen H. Microendoscopic discectomy for lumbar disc herniation: surgical technique and outcome in 873 consecutive cases. Spine. 2006;31(23):2689–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Ahn Y, Lee HY, Lee SH, Lee JH. Dural tears in percutaneous endoscopic lumbar discectomy. Eur Spine J. 2011;20(1):58–64.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Fourney DR, Dettori JR, Norvell DC, Dekutoski MB. Does minimal access tubular assisted spine surgery increase or decrease complications in spinal decompression or fusion? Spine. 2010;35(9 Suppl):S57–65.PubMedCrossRefGoogle Scholar
  41. 41.
    Ruban D, O’Toole JE. Management of incidental durotomy in minimally invasive spine surgery. Neurosurg Focus. 2011;31(4):E15.PubMedCrossRefGoogle Scholar
  42. 42.
    Parikh K, Tomasino A, Knopman J, Boockvar J, Hartl R. Operative results and learning curve: microscope-assisted tubular microsurgery for 1- and 2-level discectomies and laminectomies. Neurosurg Focus. 2008;25(2):E14.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang J, Zhou Y, Zhang ZF, Li CQ, Zheng WJ, Liu J. Minimally invasive or open transforaminal lumbar interbody fusion as revision surgery for patients previously treated by open discectomy and decompression of the lumbar spine. Eur Spine J. 2011;20(4):623–8.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Chou D, Wang VY, Khan AS. Primary dural repair during minimally invasive microdiscectomy using standard operating room instruments. Neurosurgery. 2009;64(5 Suppl 2):356–8.PubMedGoogle Scholar
  45. 45.
    Song D, Park P. Primary closure of inadvertent durotomies utilizing the U-Clip in minimally invasive spinal surgery. Spine. 2011;36(26):E1753–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Houten JK, Alexandre LC, Nasser R, Wollowick AL. Nerve injury during the transpsoas approach for lumbar fusion. J Neurosurg Spine. 2011;15(3):280–4.PubMedCrossRefGoogle Scholar
  47. 47.
    Uribe JS, Vale FL, Dakwar E. Electromyographic monitoring and its anatomical implications in minimally invasive spine surgery. Spine. 2010;35(26 Suppl):S368–74.PubMedCrossRefGoogle Scholar
  48. 48.
    Yson SC, Sembrano JN, Sanders PC, Santos ER, Ledonio CG, Polly Jr DW. Comparison of cranial facet joint violation rates between open and percutaneous pedicle screw placement using intraoperative 3-D CT (O-arm) computer navigation. Spine. 2013;38(4):E251–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J. 2012;22(3):661–6.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine. 2007;32(3):E111–20.PubMedCrossRefGoogle Scholar
  51. 51.
    Yang BP, Wahl MM, Idler CS. Percutaneous lumbar pedicle screw placement aided by computer-assisted fluoroscopy-based navigation: perioperative results of a prospective, comparative, multicenter study. Spine. 2012;37(24):2055–60.PubMedCrossRefGoogle Scholar
  52. 52.
    Mannion AF, Mutter UM, Fekete FT, O’Riordan D, Jeszenszky D, Kleinstueck FS, et al. The bothersomeness of patient self-rated “complications” reported 1 year after spine surgery. Eur Spine J. 2012;21(8):1625–32.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Texas Back InstitutePlanoUSA
  2. 2.Texas Back Institute Research FoundationPlanoUSA

Personalised recommendations