Skip to main content

Path Planning for Autonomous Underwater Vehicles

  • Chapter
  • First Online:

Abstract

This chapter addresses the task of motion or path planning for an autonomous underwater vehicle (AUV). Once a map of the environment is built, and the vehicle has been able to localize itself, the high-level task of path planning must be achieved in order for the platform to complete its mission objectives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. LaValle S (2011) Motion planning. IEEE Robot Autom Mag 18(1):79–89

    Google Scholar 

  2. Gasparri A, B.K., Sukhatme G (2008) A framework for multi-robot node coverage in sensor networks. Ann Math Artif Intell 52:281–305

    Google Scholar 

  3. Gonzalez E, Gerlein E (2009) Bsa-cm: a multi-robot coverage algorithm. In: Web intelligence and intelligent agent technologies, 2009. WI-IAT ’09. IEEE/WIC/ACM international joint conferences, vol 2, pp 383–386, sept 2009

    Google Scholar 

  4. Choset H (2001) Coverage for robotics - a survey of recent results. Ann Math Artif Intell 31:113–126

    Google Scholar 

  5. Acar EU, Choset H (2002) Sensor-based coverage of unknown environments: incremental construction of morse decompositions. Int J Robot Res 21:345–367

    Google Scholar 

  6. Ron Wein JvdB, Halperin D (2008) Planning high-quality paths and corridors amidst obstacles. Int J Robot Res 27:1213–1231

    Google Scholar 

  7. Cai C, Ferrari S (2009) Information-driven sensor path planning by approximate cell decomposition. IEEE Trans Syst, Man, and Cybernetics - Part B: Cybernetics 39(3):672–689

    Google Scholar 

  8. Baek S, Lee TK, Se-Young OH, Ju K (2011) Integrated on-line localization, mapping and coverage algorithm of unknown environments for robotic vacuum cleaners based on minimal sensing. Adv Robot 25(13–14):1651–1673

    Google Scholar 

  9. Li Y, Chen H, Er MJ, Wang XM (2011) Coverage path planning for uavs based on enhanced exact cellular decomposition method. Mechatronics 21:876–885

    Google Scholar 

  10. Jin J, Tang L (2011) Coverage path planning on three-dimensional terrain for arable farming. J Field Robot 28(3):424–440

    Google Scholar 

  11. Oksanen T, Visala A (2009) Coverage path planning algorithms for agricultural field machines. J Field Robot 26(8):651–668

    Google Scholar 

  12. Warren C (1990) A technique for autonomous underwater vehicle route planning. IEEE J Oceanic Eng 15(3):199–204

    Google Scholar 

  13. Biggs J, Holderbaum W (2009) Optimal kinematic control of an autonomous underwater vehicle. IEEE Trans Automatic Contr 54(7):1623–1626

    Google Scholar 

  14. Yilmaz N, Evangelinos C, Lermusiaux P, Patrikalakis N (2008) Path planning of autonomous underwater vehicles for adaptive sampling using mixed integer linear programming. IEEE J Oceanic Eng 33(4):522–537

    Google Scholar 

  15. Binney J, Krause A, Sukhatme G (2010) Informative path planning for an autonomous underwater vehicle. In: IEEE international conference on robotics and automation (ICRA), May 2010, pp 4791–4796

    Google Scholar 

  16. Cheng CT, Fallahi K, Leung H, Tse C (2010) An auvs path planner using genetic algorithms with a deterministic crossover operator. In: IEEE international conference on robotics and automation (ICRA), May 2010, pp 2995–3000

    Google Scholar 

  17. Petres C, Pailhas Y, Patron P, Petillot Y, Evans J, Lane D (2007) Path planning for autonomous underwater vehicles. IEEE Trans Robot 23(2):331–341

    Google Scholar 

  18. Petillot Y, Tena Ruiz I, Lane D (2001) Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar. IEEE J Oceanic Eng 26(2):240–251

    Google Scholar 

  19. Blanco M, Wilson P (2010) Autonomous underwater vehicle minimum-time navigation in a current field. In: OCEANS 2010, pp 1–4, Sept 2010

    Google Scholar 

  20. Kruger D, Stolkin R, Blum A, Briganti J (2007) Optimal auv path planning for extended missions in complex, fast-flowing estuarine environments. In: IEEE international conference on robotics and automation 2007, pp 4265–4270, April 2007

    Google Scholar 

  21. Smith RN, Chao Y, Li PP, Caron DA, Jones BH, Sukhatme GS (2010) Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model. Int J Robot Res 29(12):1475–1497

    Google Scholar 

  22. Soulignac M (2011) Feasible and optimal path planning in strong current fields. IEEE Trans Robot 27(1):89–98

    Google Scholar 

  23. Alvarez A, Caiti A, Onken R (2004) Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J Oceanic Eng 29(2):418–429

    Google Scholar 

  24. Thompson D, Chien S, Chao Y, Li P, Cahill B, Levin J, Schofield O, Balasuriya A, Petillo S, Arrott M, Meisinger M (2010) Spatiotemporal path planning in strong, dynamic, uncertain currents. In: IEEE international conference on robotics and automation (ICRA) 2010, pp 4778–4783, May 2010

    Google Scholar 

  25. Stack J, Smith C (2003) Combining random and data-driven coverage planning for underwater mine detection. In: Proceedings of OCEANS 2003, vol 5, pp 2463–2468, Sept 2003

    Google Scholar 

  26. Fang C, Anstee S (2010) Coverage path planning for harbour seabed surveys using an autonomous underwater vehicle. In: OCEANS 2010 IEEE - Sydney, pp 1–8, May 2010

    Google Scholar 

  27. Choset H (2000) Coverage of known spaces: the boustrophedon cellular decomposition. Autonomous Robots 9:247–253

    Google Scholar 

  28. Kim A, Eustice R (2009) Toward auv survey design for optimal coverage and localization using the cramer rao lower bound. In: OCEANS 2009, pp 1–7, Oct 2009

    Google Scholar 

  29. Williams D (2010) On optimal auv track-spacing for underwater mine detection. In: IEEE international conference on robotics and automation (ICRA) 2010, pp 4755–4762, May 2010

    Google Scholar 

  30. Paull L, Saeedi S, Li H, Myers V (2010) An information gain based adaptive path planning method for an autonomous underwater vehicle using sidescan sonar. In: IEEE conference on automation science and engineering (CASE), pp 835–840, 2010

    Google Scholar 

  31. Lumelsky V, Stepanov A (1987) Path planning strategies for point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2:403–430

    Google Scholar 

  32. I Kamon ER, Rivlin E (1998) Tangentbug: A range-sensor based navigation algorithm. Int J Robot Res 17(9):934–953

    Google Scholar 

  33. Choset H, Burgard W, Hutchinson S, Kantor G, Kavraki LE, Lynch K, Thrun S (2005) Principles of robot motion: theory, algorithms, and implementation. MIT Press, Cambridge

    Google Scholar 

  34. Khatib O (1986) Real-time obstacle avoidance for manipulators and mobile robots. Int J Robot Res 5:90–98

    Google Scholar 

  35. Koditschek DE, Rimon E (1990) Robot navigation functions on manifolds with boundary. Adv Appl Math 11:412–442

    Google Scholar 

  36. Barraquand J, Langlois B, Latombe C (1992) Numerical potential field techniques for robot path planning. IEEE Trans Man and Cybernetics 22:224–241

    Google Scholar 

  37. Latombe J (1991) Robot motion planning. Kluwer Academic Publishers, Norwell

    Google Scholar 

  38. Lozano-Perez T, Wesley M (1979) An algorithm for planning collision-free paths among polyhedral obstacles. Commun ACM 22(10):560–570

    Google Scholar 

  39. Aurenhammer F (1991) Voronoi diagrams a survey of a fundamental geometric structure. ACM Comput Surveys 23:345–405

    Google Scholar 

  40. Kavraki LE, Svestka P, Latombe J-C, Overmars MH (1996) Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans Robot Autom 12(4):566–580

    Google Scholar 

  41. Kuffner JJ, LaValle SM (2000) Rrt-connect: an efficient approach to single-query path planning. In: IEEE international conference on robotics and automation, pp 995–1001, 2000

    Google Scholar 

  42. Choset H (2000) Coverage of known spaces: the boustrophedon cellular decomposition. Autonomous Robots 9:247–253

    Google Scholar 

  43. Acar EU, Choset H, Rizzi AA, Atkar PN, Hull D (2002) Morse decompositions for coverage tasks. Int J Robotic Res 21(4):331–344

    Google Scholar 

  44. Szymczyk M, LaMothe A (2002) Mac game programming. Muska & Lipman/Premier-Trade

    Google Scholar 

  45. Srinivas S, Patnaik LM (1994) Genetic algorithms: a survey. IEEE Comput 27(6):17–26

    Google Scholar 

  46. Holland J (1945) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  47. Li H, Yang S, Seto M (2009) Neural network based path planning for a multi-robot system with moving obstacles. IEEE Trans Syst, Man and Cybernetics, Part C - Appl Rev 39

    Google Scholar 

  48. Pehlivanoglu YV (2007) Path planning for autonomous uav via vibrational genetic algorithm. Aircraft Eng Aerospace Tech: Int J 79(8):532–539

    Google Scholar 

  49. Davis L (1991) Handbook on genetic algorithms. Van Nostrand Reinhold, New York

    Google Scholar 

  50. Zerr B, Fawcett J, Hopkin D (2009) Adaptive algorithm for sea mine classification. In: 3rd international conference & exhibition on underwater acoustic measurements: technologies & results, pp 319–326, 2009

    Google Scholar 

  51. Williams D, Groen J, Fox W (2011) A fast detection algorithm for autonomous mine countermeasures. In: NATO underwater research center, Nurc-fr-2011-006, Oct 2011

    Google Scholar 

  52. Chapple P (2002) Automated detection and classification in high-resolution sonar imagery for autonomous underwater vehicle operations. Dsto-gd-0537, Maritime operations division DSTO defence science and technology organisation, Dec 2002

    Google Scholar 

  53. Davies G, Signell E (2006) Espresso scientific user guide. In: NATO underwater research centre, Nurc-sp-2006-003, 2006

    Google Scholar 

  54. Grocholsky B (2002) Information-theoretic control of multiple sensor platforms. Ph.D. thesis, Australian Centre for Field Robotics, University of Sydney

    Google Scholar 

  55. Papoulis A, Pillai SU (2002) Probability, random variables and stochastic processes, 4th edn. McGraw Hill, New York

    Google Scholar 

  56. Fawcett J, Myers V, Hopkin D, Crawford A, Couillard M, Zerr B (2010) Multiaspect classification of sidescan sonar images: Four different approaches to fusing single-aspect information. IEEE J Oceanic Eng 35(4):863–876

    Google Scholar 

  57. Fawcett JA, Crawford A, Hopkin D, Myers V, Couillard M, Zerr B (2008) Multi-aspect computer-aided classification of the citadel trial side-scan sonar images. Drdc atlantic tm 2008-029, Defence R&D Canada - Atlantic, 2008

    Google Scholar 

  58. Bourque FA, Nguyen B (2011) Optimal sensor configurations for rectangular target detection. In: 9th IEEE international conference on control and automation (ICCA) 2011, pp 455–460, Dec 2011

    Google Scholar 

  59. Bays M, Shende A, Stilwell D, Redfield S (2011) A solution to the multiple aspect coverage problem. In: IEEE international conference on robotics and automation (ICRA) 2011, pp 1531–1537, May 2011

    Google Scholar 

  60. Nguyen B, Hopkin D, Yip H (2008) Autonomous underwater vehicles a transformation of mine counter-measure operations. Defense and Security Analysis 243:247–266

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paull, L., Saeedi, S., Li, H. (2013). Path Planning for Autonomous Underwater Vehicles. In: Seto, M. (eds) Marine Robot Autonomy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5659-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5659-9_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5658-2

  • Online ISBN: 978-1-4614-5659-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics