Skip to main content

Progression of Early Breast Cancer to an Invasive Phenotype

  • Chapter
  • First Online:
Breast Cancer Metastasis and Drug Resistance

Abstract

Histological and molecular evidence has led to a model of breast cancer progression in which cells from the terminal duct lobular unit give rise to atypical ductal hyperplasia or atypical lobular hyperplasia, which can progress to ductal carcinoma in situ or lobular carcinoma in situ, and eventually to invasive ductal carcinoma or invasive lobular carcinoma respectively. This review will present a histomorphological and epidemiological overview of the pre-invasive stages of breast cancer progression. As there is mounting evidence that these stages are likely rough phenotypes of underlying molecular changes, current knowledge regarding changes in genetic and epigenetic features of breast cancer progression will also be discussed. Microarray and CGH-based studies will be described, which suggest that low- and high-grade breast cancers can arise from normal terminal ducts through two distinct molecular pathways. Various in vitro and in vivo models used to study the cellular and molecular changes involved in early breast cancer progression will be presented. Lastly, the specific transition from pre-invasive to invasive breast cancer will be addressed, including possible molecular predictors of the invasive phenotype and a contemporary view highlighting the involvement of the tumor microenvironment during the transition to invasive disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society (2012) Cancer Facts & Figures 2012. American Cancer Society, Atlanta GA

    Google Scholar 

  2. Canadian Cancer Society’s Steering Committee on Cancer Statistics (2012) Canadian Cancer Statistics 2012. Canadian Cancer Society, Toronto ON

    Google Scholar 

  3. Kerlikowske K, Molinaro A, Cha I et al (2003) Characteristics associated with recurrence among women with ductal carcinoma in situ treated by lumpectomy. J Natl Cancer Inst 95:1692–1702

    Article  PubMed  Google Scholar 

  4. Page DL, Dupont WD, Rogers LW et al (1985) Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer 55:2698–2708

    Article  PubMed  CAS  Google Scholar 

  5. Page DL, Dupont WD (1993) Anatomic indicators (histologic and cytologic) of increased breast cancer risk. Breast Cancer Res Treat 28:157–166

    Article  PubMed  CAS  Google Scholar 

  6. Lakhani SR, Collins N, Stratton MR et al (1995) Atypical ductal hyperplasia of the breast: clonal proliferation with loss of heterozygosity on chromosomes 16q and 17p. J Clin Pathol 48:611–615

    Article  PubMed  CAS  Google Scholar 

  7. Allred DC, Mohsin SK, Fuqua SA (2001) Histological and biological evolution of human premalignant breast disease. Endocr Relat Cancer 8:47–61

    Article  PubMed  CAS  Google Scholar 

  8. Arpino G, Laucirica R, Elledge RM (2005) Premalignant and in situ breast disease: biology and clinical implications. Ann Intern Med 143:446–457

    PubMed  Google Scholar 

  9. Allred DC, Wu Y, Mao S et al (2008) Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res 14:370–378

    Article  PubMed  CAS  Google Scholar 

  10. Wellings SR, Jensen HM (1973) On the origin and progression of ductal carcinoma in the human breast. J Natl Cancer Inst 50:1111–1118

    PubMed  CAS  Google Scholar 

  11. Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55:231–273

    PubMed  CAS  Google Scholar 

  12. Sgroi DC (2010) Preinvasive breast cancer. Annu Rev Pathol 5:193–221

    Article  PubMed  CAS  Google Scholar 

  13. Schnitt SJ (2003) The diagnosis and management of pre-invasive breast disease: flat epithelial atypia–classification, pathologic features and clinical significance. Breast Cancer Res 5:263–268

    Article  PubMed  Google Scholar 

  14. Lerwill MF (2008) Flat epithelial atypia of the breast. Arch Pathol Lab Med 132:615–621

    PubMed  Google Scholar 

  15. Tavassoli FA, Norris HJ (1990) A comparison of the results of long-term follow-up for atypical intraductal hyperplasia and intraductal hyperplasia of the breast. Cancer 65:518–529

    Article  PubMed  CAS  Google Scholar 

  16. Page DL, Rogers LW (1992) Combined histologic and cytologic criteria for the diagnosis of mammary atypical ductal hyperplasia. Hum Pathol 23:1095–1097

    Article  PubMed  CAS  Google Scholar 

  17. Bellamy CO, McDonald C, Salter DM et al (1993) Noninvasive ductal carcinoma of the breast: the relevance of histologic categorization. Hum Pathol 24:16–23

    Article  PubMed  CAS  Google Scholar 

  18. Ueng SH, Mezzetti T, Tavassoli FA (2009) Papillary neoplasms of the breast: a review. Arch Pathol Lab Med 133:893–907

    PubMed  Google Scholar 

  19. Pinder SE, Ellis IO (2003) The diagnosis and management of pre-invasive breast disease: ductal carcinoma in situ (DCIS) and atypical ductal hyperplasia (ADH)–current definitions and classification. Breast Cancer Res 5:254–257

    Article  PubMed  Google Scholar 

  20. Marshall LM, Hunter DJ, Connolly JL et al (1997) Risk of breast cancer associated with atypical hyperplasia of lobular and ductal types. Cancer Epidemiol Biomarkers Prev 6:297–301

    PubMed  CAS  Google Scholar 

  21. Venkitaraman R (2010) Lobular neoplasia of the breast. Breast J 16:519–528

    Article  PubMed  Google Scholar 

  22. Vos CB, Cleton-Jansen AM, Berx G et al (1997) E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer 76:1131–1133

    Article  PubMed  CAS  Google Scholar 

  23. Eusebi V, Magalhaes F, Azzopardi JG (1992) Pleomorphic lobular carcinoma of the breast: an aggressive tumor showing apocrine differentiation. Hum Pathol 23:655–662

    Article  PubMed  CAS  Google Scholar 

  24. Weidner N, Semple JP (1992) Pleomorphic variant of invasive lobular carcinoma of the breast. Hum Pathol 23:1167–1171

    Article  PubMed  CAS  Google Scholar 

  25. Fitzgibbons PL, Henson DE, Hutter RV (1998) Benign breast changes and the risk for subsequent breast cancer: an update of the 1985 consensus statement. Cancer Committee of the College of American Pathologists. Arch Pathol Lab Med 122:1053–1055

    PubMed  CAS  Google Scholar 

  26. Martel M, Barron-Rodriguez P, Tolgay Ocal I et al (2007) Flat DIN 1 (flat epithelial atypia) on core needle biopsy: 63 cases identified retrospectively among 1,751 core biopsies performed over an 8-year period (1992–1999). Virchows Arch 451:883–891

    Article  PubMed  Google Scholar 

  27. Kunju LP, Kleer CG (2007) Significance of flat epithelial atypia on mammotome core needle biopsy: should it be excised? Hum Pathol 38:35–41

    Article  PubMed  Google Scholar 

  28. Ellis IO (2010) Intraductal proliferative lesions of the breast: morphology, associated risk and molecular biology. Mod Pathol 23(Suppl 2):1–7

    Article  Google Scholar 

  29. Buerger H, Otterbach F, Simon R et al (1999) Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol 187:396–402

    Article  PubMed  CAS  Google Scholar 

  30. Buerger H, Mommers EC, Littmann R et al (2001) Ductal invasive G2 and G3 carcinomas of the breast are the end stages of at least two different lines of genetic evolution. J Pathol 194:165–170

    Article  PubMed  CAS  Google Scholar 

  31. Simpson PT, Gale T, Reis-Filho JS et al (2005) Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol 29:734–746

    Article  PubMed  Google Scholar 

  32. Yao J, Weremowicz S, Feng B et al (2006) Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res 66:4065–4078

    Article  PubMed  CAS  Google Scholar 

  33. O’Connell P, Pekkel V, Fuqua SA et al (1998) Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 90:697–703

    Article  PubMed  Google Scholar 

  34. Amari M, Suzuki A, Moriya T et al (1999) LOH analyses of premalignant and malignant lesions of human breast: frequent LOH in 8p, 16q, and 17q in atypical ductal hyperplasia. Oncol Rep 6:1277–1280

    PubMed  CAS  Google Scholar 

  35. Moinfar F, Man YG, Bratthauer GL et al (2000) Genetic abnormalities in mammary ductal intraepithelial neoplasia-flat type (“clinging ductal carcinoma in situ”): a simulator of normal mammary epithelium. Cancer 88:2072–2081

    Article  PubMed  CAS  Google Scholar 

  36. Oyama T, Iijima K, Takei H et al (2000) Atypical cystic lobule of the breast: an early stage of low-grade ductal carcinoma in situ. Breast Cancer 7:326–331

    Article  PubMed  CAS  Google Scholar 

  37. Kusama R, Fujimori M, Matsuyama I et al (2000) Clinicopathological characteristics of atypical cystic duct (ACD) of the breast: assessment of ACD as a precancerous lesion. Pathol Int 50:793–800

    Article  PubMed  CAS  Google Scholar 

  38. Ma XJ, Salunga R, Tuggle JT et al (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A 100:5974–5979

    Article  PubMed  CAS  Google Scholar 

  39. Ma XJ, Dahiya S, Richardson E et al (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11:7

    Article  Google Scholar 

  40. Porter D, Lahti-Domenici J, Keshaviah A et al (2003) Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res 1:362–375

    PubMed  CAS  Google Scholar 

  41. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  42. Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    Article  PubMed  CAS  Google Scholar 

  43. Goetz MP, Suman VJ, Ingle JN et al (2006) A two-gene expression ratio of homeobox 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen. Clin Cancer Res 12:2080–2087

    Article  PubMed  CAS  Google Scholar 

  44. Jerevall PL, Brommesson S, Strand C et al (2008) Exploring the two-gene ratio in breast cancer–independent roles for HOXB13 and IL17BR in prediction of clinical outcome. Breast Cancer Res Treat 107:225–234

    Article  PubMed  CAS  Google Scholar 

  45. Desmedt C, Sotiriou C (2006) Proliferation: the most prominent predictor of clinical outcome in breast cancer. Cell Cycle 5:2198–2202

    Article  PubMed  CAS  Google Scholar 

  46. Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272

    Article  PubMed  CAS  Google Scholar 

  47. Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486(7403):346–352

    PubMed  CAS  Google Scholar 

  48. Lu YJ, Osin P, Lakhani SR et al (1998) Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res 58:4721–4727

    PubMed  CAS  Google Scholar 

  49. Mastracci TL, Shadeo A, Colby SM et al (2006) Genomic alterations in lobular neoplasia: a microarray comparative genomic hybridization signature for early neoplastic proliferationin the breast. Genes Chromosomes Cancer 45:1007–1017

    Article  PubMed  CAS  Google Scholar 

  50. Morandi L, Marucci G, Foschini MP et al (2006) Genetic similarities and differences between lobular in situ neoplasia (LN) and invasive lobular carcinoma of the breast. Virchows Arch 449:14–23

    Article  PubMed  Google Scholar 

  51. Middleton LP, Palacios DM, Bryant BR et al (2000) Pleomorphic lobular carcinoma: morphology, immunohistochemistry, and molecular analysis. Am J Surg Pathol 24:1650–1656

    Article  PubMed  CAS  Google Scholar 

  52. Simpson PT, Reis-Filho JS, Lambros MB et al (2008) Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol 215:231–244

    Article  PubMed  CAS  Google Scholar 

  53. Boldt V, Stacher E, Halbwedl I et al (2010) Positioning of necrotic lobular intraepithelial neoplasias (LIN, grade 3) within the sequence of breast carcinoma progression. Genes Chromosomes Cancer 49:463–470

    PubMed  CAS  Google Scholar 

  54. Weaver VM, Howlett AR, Langton-Webster B et al (1995) The development of a functionally relevant cell culture model of progressive human breast cancer. Semin Cancer Biol 6:175–184

    Article  PubMed  CAS  Google Scholar 

  55. Miller FR, Santner SJ, Tait L et al (2000) MCF10DCIS.com xenograft model of human comedo ductal carcinoma in situ. J Natl Cancer Inst 92:1185–1186

    Article  PubMed  CAS  Google Scholar 

  56. Stampfer MR, Yaswen P (2000) Culture models of human mammary epithelial cell transformation. J Mammary Gland Biol Neoplasia 5:365–378

    Article  PubMed  CAS  Google Scholar 

  57. Briand P, Lykkesfeldt AE (2001) An in vitro model of human breast carcinogenesis: epigenetic aspects. Breast Cancer Res Treat 65:179–187

    Article  PubMed  CAS  Google Scholar 

  58. Medina D (2000) The preneoplastic phenotype in murine mammary tumorigenesis. J Mammary Gland Biol Neoplasia 5:393–407

    Article  PubMed  CAS  Google Scholar 

  59. Band V, Zajchowski D, Swisshelm K et al (1990) Tumor progression in four mammary epithelial cell lines derived from the same patient. Cancer Res 50:7351–7357

    PubMed  CAS  Google Scholar 

  60. Souter LH, Andrews JD, Zhang G et al (2010) Human 21T breast epithelial cell lines mimic breast cancer progression in vivo and in vitro and show stage-specific gene expression patterns. Lab Invest 90:1247–1258

    Article  PubMed  CAS  Google Scholar 

  61. Shaw KR, Wrobel CN, Brugge JS (2004) Use of three-dimensional basement membrane cultures to model oncogene-induced changes in mammary epithelial morphogenesis. J Mammary Gland Biol Neoplasia 9:297–310

    Article  PubMed  Google Scholar 

  62. Fournier MV, Martin KJ (2006) Transcriptome profiling in clinical breast cancer: from 3D culture models to prognostic signatures. J Cell Physiol 209:625–630

    Article  PubMed  CAS  Google Scholar 

  63. Kenny PA, Lee GY, Myers CA et al (2007) The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 1:84–96

    Article  PubMed  CAS  Google Scholar 

  64. Lee GY, Kenny PA, Lee EH et al (2007) Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods 4:359–365

    Article  PubMed  CAS  Google Scholar 

  65. Hebner C, Weaver VM, Debnath J (2008) Modeling morphogenesis and oncogenesis in three-dimensional breast epithelial cultures. Annu Rev Pathol 3:313–339

    Article  PubMed  CAS  Google Scholar 

  66. Martin KJ, Patrick DR, Bissell MJ et al (2008) Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLoS ONE 3:e2994

    Article  PubMed  Google Scholar 

  67. Fauquette W, Dong-Le Bourhis X, Delannoy-Courdent A et al (1997) Characterization of morphogenetic and invasive abilities of human mammary epithelial cells: correlation with variations of urokinase-type plasminogen activator activity and type-1 plasminogen activator inhibitor level. Biol Cell 89:453–465

    Article  PubMed  CAS  Google Scholar 

  68. Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245

    Article  PubMed  CAS  Google Scholar 

  69. Wang F, Weaver VM, Petersen OW et al (1998) Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci USA 95:14821–14826

    Article  PubMed  CAS  Google Scholar 

  70. Debnath J, Mills KR, Collins NL et al (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111:29–40

    Article  PubMed  CAS  Google Scholar 

  71. Rizki A, Weaver VM, Lee SY et al (2008) A human breast cell model of preinvasive to invasive transition. Cancer Res 68:1378–1387

    Article  PubMed  CAS  Google Scholar 

  72. Hu M, Yao J, Carroll DK et al (2008) Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13:394–406

    Article  PubMed  CAS  Google Scholar 

  73. Howe LR, Chang SH, Tolle KC et al (2005) HER2/neu-induced mammary tumorigenesis and angiogenesis are reduced in cyclooxygenase-2 knockout mice. Cancer Res 65:10113–10119

    Article  PubMed  CAS  Google Scholar 

  74. Wu M, Jung L, Cooper AB et al (2009) Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice. Proc Natl Acad Sci U S A 106:7022–7027

    Article  PubMed  CAS  Google Scholar 

  75. Cao D, Polyak K, Halushka MK et al (2008) Serial analysis of gene expression of lobular carcinoma in situ identifies down regulation of claudin 4 and overexpression of matrix metalloproteinase 9. Breast Cancer Res 10:91

    Article  Google Scholar 

  76. Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  77. Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  78. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  79. Livasy CA, Karaca G, Nanda R et al (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19:264–271

    Article  PubMed  CAS  Google Scholar 

  80. Gauthier ML, Berman HK, Miller C et al (2007) Abrogated response to cellular stress identifies DCIS associated with subsequent tumor events and defines basal-like breast tumors. Cancer Cell 12:479–491

    Article  PubMed  CAS  Google Scholar 

  81. Kerlikowske K, Molinaro AM, Gauthier ML et al (2010) Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J Natl Cancer Inst 102:627–637

    Article  PubMed  CAS  Google Scholar 

  82. Radisky DC, Santisteban M, Berman HK et al (2011) p16(INK4a) expression and breast cancer risk in women with atypical hyperplasia. Cancer Prev Res 4:1953–1960

    Article  Google Scholar 

  83. Allinen M, Beroukhim R, Cai L et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    Article  PubMed  CAS  Google Scholar 

  84. Hu M, Yao J, Cai L et al (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37:899–905

    Article  PubMed  CAS  Google Scholar 

  85. Orimo A, Gupta PB, Sgroi DC et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    Article  PubMed  CAS  Google Scholar 

  86. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  PubMed  CAS  Google Scholar 

  87. Sung KE, Yang N, Pehlke C et al (2011) Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr Biol (Camb) 3:439–450

    Article  CAS  Google Scholar 

  88. Kojima Y, Acar A, Eaton EN et al (2010) Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci USA 107:20009–20014

    Article  PubMed  CAS  Google Scholar 

  89. Malmberg KJ (2004) Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother 53:879–892

    Article  PubMed  CAS  Google Scholar 

  90. Polyak K, Hu M (2005) Do myoepithelial cells hold the key for breast tumor progression? J Mammary Gland Biol Neoplasia 10:231–247

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan B. Tuck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

MacMillan, C.D., Chambers, A.F., Tuck, A.B. (2013). Progression of Early Breast Cancer to an Invasive Phenotype. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5647-6_8

Download citation

Publish with us

Policies and ethics