Skip to main content

The Biology of the Deadly Love Connection Between Obesity, Diabetes, and Breast Cancer

  • Chapter
  • First Online:
Breast Cancer Metastasis and Drug Resistance

Abstract

Breast cancer is the most common malignant disease of women in the world and a leading cause of women’s deaths. Many risk factors such as genetics, hormones, aging, and environment have been associated with breast cancer. Interestingly, a large number of epidemiological and clinical studies suggest that obesity and diabetes, especially type-2 diabetes, are associated with higher risk of breast cancer. Similarly, these chronic diseases, such as obesity, diabetes, and cancer, are also a major public health concern in the world. Fifty percent of the United States’ population is overweight, thirty percent is obese, and ten percent has diabetes mellitus. Therefore, obesity and diabetes mellitus have been considered as potential risk factors for many cancers but this chapter is focused only on breast cancer. Although the mechanisms responsible for the development of these chronic diseases leading to the development of breast cancer are not fully understood, the biological importance of the activation of insulin, insulin like growth factor-1 (IGF-1) and its receptor (IGF-1R) signaling pathways in insulin-resistance mechanism and subsequent induction of compensatory hyperinsulinemia has been proposed. Therefore, targeting insulin/IGF-1 signaling with anti-diabetic drugs for lowering blood insulin levels and reversal of insulin-resistance could be a useful strategy for the prevention and/or treatment of breast cancer. Increased numbers of clinical studies have demonstrated that the administration of commonly used anti-diabetic drugs such as metformin decreases the risk of cancers, suggesting that these agents might be useful anti-tumor agents for the treatment of breast cancer. In this chapter, we will discuss the potential roles of anti-diabetic drug metformin as anti-tumor agents in the context of breast cancer, and will further discuss the potential roles of microRNAs (miRNAs) in the pathogenesis of obesity, diabetes, and breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R, Naishadham D, Jemal A (2012) Cancer statistics. CA Cancer J Clin 62:10–29

    Article  PubMed  Google Scholar 

  2. Dal ML, Zucchetto A, Talamini R, Serraino D, Stocco CF, Vercelli M, Falcini F, Franceschi S (2008) Effect of obesity and other lifestyle factors on mortality in women with breast cancer. Int J Cancer 123:2188–2194

    Article  CAS  Google Scholar 

  3. Schuster DP (2010) Obesity and the development of type 2 diabetes: The effects of fatty tissue inflamation. In: Anonymous, Dovepress, New Zealand, pp 253–262

    Google Scholar 

  4. WHO (2012) World Health Organization Fact Sheet: obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/

  5. Chang S, Masse LC, Moser RP, Dodd KW, Arganaraz F, Fuemmler BF, Jemal A (2008) State ranks of incident cancer burden due to overweight and obesity in the United States 2003. Obesity 16:50–1636

    Google Scholar 

  6. Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL (1998) Overweight and obesity in the United States: prevalence and trends 1960–1994. Int J Obes Relat Metab Disord 22:39–47

    Article  PubMed  CAS  Google Scholar 

  7. Perks CM, Holly JM (2011) Hormonal mechanisms underlying the relationship between obesity and breast cancer. Endocrinol Metab Clin North Am 40:485–507

    Google Scholar 

  8. FAO, WHO (1985) UN Energy and protein requirements: report of a joint expert consultation. In: Anonymous, World Health Organization, Geneva

    Google Scholar 

  9. Flegal KM, Carroll MD, Ogden CL, Curtin LR (2010) Prevalence and trends in obesity among US adults 1999–2008. JAMA 303:235–241

    Article  PubMed  CAS  Google Scholar 

  10. Anderson AS, Caswell S (2009) Obesity management—an opportunity for cancer prevention. Surgeon 7:282–285

    Article  PubMed  CAS  Google Scholar 

  11. Bianchini F, Kaaks R, Vainio H (2002) Overweight obesity and cancer risk. Lancet Oncol 3:565–574

    Article  PubMed  Google Scholar 

  12. Abu-Abid S, Szold A, Klausner J (2002) Obesity and cancer. J Med 33:73–86

    PubMed  Google Scholar 

  13. Calle EE, Thun MJ (2004) Obesity and cancer. Oncogene 23:6365–6378

    Article  PubMed  CAS  Google Scholar 

  14. Gumbs AA (2008) Obesity pancreatitis and pancreatic cancer. Obes Surg 18:1183–1187

    Article  PubMed  Google Scholar 

  15. Hsing AW, Sakoda LC, Chua S Jr (2007) Obesity metabolic syndrome and prostate cancer. Am J Clin Nutr 86:s843–s857

    PubMed  Google Scholar 

  16. Kuriyama S, Tsubono Y, Hozawa A, Shimazu T, Suzuki Y, Koizumi Y, Suzuki Y, Ohmori K, Nishino Y, Tsuji I (2005) Obesity and risk of cancer in Japan. Int J Cancer 113:148–157

    Article  PubMed  CAS  Google Scholar 

  17. Percik R, Stumvoll M (2009) Obesity and cancer. Exp Clin Endocrinol Diabetes 117:563–566

    Article  PubMed  CAS  Google Scholar 

  18. Pischon T, Nothlings U, Boeing H (2008) Obesity and cancer. Proc Nutr Soc 67:128–415

    Article  PubMed  Google Scholar 

  19. Teucher B, Rohrmann S, Kaaks R (2010) Obesity: focus on all-cause mortality and cancer. Maturitas 65:112–116

    Article  PubMed  Google Scholar 

  20. Brown KA, Simpson ER (2010) Obesity and breast cancer: progress to understanding the relationship. Cancer Res 70:4–7

    Article  PubMed  CAS  Google Scholar 

  21. Carroll KK (1998) Obesity as a risk factor for certain types of cancer. Lipids 33:1055–1059

    Article  PubMed  CAS  Google Scholar 

  22. Barnett GC, Shah M, Redman K, Easton DF, Ponder BA, Pharoah PD (2008) Risk factors for the incidence of breast cancer: do they affect survival from the disease? J Clin Oncol 26:3310–3316

    Article  PubMed  Google Scholar 

  23. Boyle P, Ferlay J (2005) Cancer incidence and mortality in Europe 2004. Ann Oncol 16:481–488

    Article  PubMed  CAS  Google Scholar 

  24. Carmichael AR (2006) Obesity and prognosis of breast cancer. Obes Rev 7:333–340

    Article  PubMed  CAS  Google Scholar 

  25. Carter JC, Church FC (2009) Obesity and breast cancer: the roles of peroxisome proliferator-activated receptor-gamma and plasminogen activator inhibitor-1. PPARRes 345320

    Google Scholar 

  26. Rapp K, Schroeder J, Klenk J, Stoehr S, Ulmer H, Concin H, Diem G, Oberaigner W, Weiland SK (2005) Obesity and incidence of cancer: a large cohort study of over 145000 adults in Austria. Br J Cancer 93:1062–1067

    Article  PubMed  CAS  Google Scholar 

  27. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ (2003) Overweight obesity and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med 348:1625–1638

    Article  PubMed  Google Scholar 

  28. Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D (2007) Cancer incidence and mortality in relation to body mass index in the million women study: cohort study. BMJ 335:1134

    Article  PubMed  Google Scholar 

  29. van den Brandt PA, Spiegelman D, Yaun SS, Adami HO, Beeson L, Folsom AR, Fraser G, Goldbohm RA, Graham S, Kushi L, Marshall JR, Miller AB, Rohan T, Smith-Warner SA, Speizer FE, Willett WC, Wolk A, Hunter DJ (2000) Pooled analysis of prospective cohort studies on height weight and breast cancer risk. Am J Epidemiol 152:514–527

    Article  PubMed  Google Scholar 

  30. Godsland IF (2010) Insulin resistance and hyperinsulinaemia in the development and progression of cancer. Clin Sci 118:315–332

    Article  CAS  Google Scholar 

  31. Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481

    Article  PubMed  CAS  Google Scholar 

  32. Pisani P (2008) Hyper-insulinaemia and cancer meta-analyses of epidemiological studies. Arch Physiol Biochem 114:63–70

    Article  PubMed  CAS  Google Scholar 

  33. Johansen D, Stocks T, Jonsson H, Lindkvist B, Bjorge T, Concin H, Almquist M, Haggstrom C, Engeland A, Ulmer H, Hallmans G, Selmer R, Nagel G, Tretli S, Stattin P, Manjer J (2010) Metabolic factors and the risk of pancreatic cancer: a prospective analysis of almost 580000 men and women in the metabolic syndrome and cancer project. Cancer Epidemiol Biomarkers Prev 19:2307–2317

    Article  PubMed  CAS  Google Scholar 

  34. JazetI M, Pijl H, Meinders AE (2003) Adipose tissue as an endocrine organ: impact on insulin resistance. Neth J Med 61:194–212

    Google Scholar 

  35. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840–846

    Article  PubMed  CAS  Google Scholar 

  36. Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116:1793–1801

    Article  PubMed  CAS  Google Scholar 

  37. Becker S, Dossus L, Kaaks R (2009) Obesity related hyperinsulinaemia and hyperglycaemia and cancer development. Arch Physiol Biochem 115:86–96

    Article  PubMed  CAS  Google Scholar 

  38. Bartella V, Cascio S, Fiorio E, Auriemma A, Russo A, Surmacz E (2008) Insulin-dependent leptin expression in breast cancer cells. Cancer Res 68:4919–4927

    Article  PubMed  CAS  Google Scholar 

  39. Boyd DB (2003) Insulin and cancer. Integr Cancer Ther 2:315–329

    Article  PubMed  CAS  Google Scholar 

  40. Ferguson RD, Novosyadlyy R, Fierz Y, Alikhani N, Sun H, Yakar S, Leroith D (2012) Hyperinsulinemia enhances c-Myc-mediated mammary tumor development and advances metastatic progression to the lung in a mouse model of type 2 diabetes. Breast Cancer Res 14:R8

    Article  PubMed  CAS  Google Scholar 

  41. Scheen AJ, Beck E, De FJ, Rorive M (2011) Obesity insulin resistance and type 2 diabetes: risk factors for breast cancer. Rev Med Liege 66:238–244

    PubMed  CAS  Google Scholar 

  42. Mossner J, Logsdon CD, Goldfine ID, Williams JA (1987) Do insulin and the insulin like growth factors (IGFs) stimulate growth of the exocrine pancreas? Gut 28(Suppl):51–55

    Article  PubMed  Google Scholar 

  43. Conover CA, Lee PD, Kanaley JA, Clarkson JT, Jensen MD (1992) Insulin regulation of insulin-like growth factor binding protein-1 in obese and nonobese humans. J Clin Endocrinol Metab 74:1355–1360

    Article  PubMed  CAS  Google Scholar 

  44. Giovannucci E (2003) Nutrition insulin insulin-like growth factors and cancer. Horm Metab Res 35:694–704

    Article  PubMed  CAS  Google Scholar 

  45. Kaaks R, Lukanova A (2001) Energy balance and cancer: the role of insulin and insulin-like growth factor-I. Proc Nutr Soc 60:91–106

    Article  PubMed  CAS  Google Scholar 

  46. Kaaks R (2004) Nutrition insulin IGF-1 metabolism and cancer risk: a summary of epidemiological evidence. Novartis Found Symp 262:247–260

    Article  PubMed  CAS  Google Scholar 

  47. Khandwala HM, McCutcheon IE, Flyvbjerg A, Friend KE (2000) The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr Rev 21:215–244

    Article  PubMed  CAS  Google Scholar 

  48. Verheus M, Peeters PH, Rinaldi S, Dossus L, Biessy C, Olsen A, Tjonneland A, Overvad K, Jeppesen M, Clavel-Chapelon F, Tehard B, Nagel G, Linseisen J, Boeing H, Lahmann PH, Arvaniti A, Psaltopoulou T, Trichopoulou A, Palli D, Tumino R, Panico S, Sacerdote C, Sieri S, van Gils CH, Bueno-de-Mesquita BH, Gonzalez CA, Ardanaz E, Larranaga N, Garcia CM, Navarro C, Quiros JR, Key T, Allen N, Bingham S, Khaw KT, Slimani N, Riboli E, Kaaks R (2006) Serum C-peptide levels and breast cancer risk: results from the European prospective investigation into cancer and nutrition. Int J Cancer 119:659–667

    Article  PubMed  CAS  Google Scholar 

  49. Wei EK, Ma J, Pollak MN, Rifai N, Fuchs CS, Hankinson SE, Giovannucci E (2005) A prospective study of C-peptide insulin-like growth factor-I insulin-like growth factor binding protein-1 and the risk of colorectal cancer in women. Cancer Epidemiol Biomarkers Prev 14:850–855

    Article  PubMed  CAS  Google Scholar 

  50. Engeli S, Feldpausch M, Gorzelniak K, Hartwig F, Heintze U, Janke J, Mohlig M, Pfeiffer AF, Luft FC, Sharma AM (2003) Association between adiponectin and mediators of inflammation in obese women. Diabetes 52:942–947

    Article  PubMed  CAS  Google Scholar 

  51. Straczkowski M, Kowalska I, Stepien A, Dzienis-Straczkowska S, Szelachowska M, Kinalska I (2002) Increased plasma-soluble tumor necrosis factor-alpha receptor 2 level in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes Care 25:1824–1828

    Article  PubMed  CAS  Google Scholar 

  52. Khalili P, Flyvbjerg A, Frystyk J, Lundin F, Jendle J, Engstrom G, Nilsson PM (2010) Total adiponectin does not predict cardiovascular events in middle-aged men in a prospective long-term follow-up study. Diabetes Metab 36:137–143

    Google Scholar 

  53. Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Adiponectin and protection against type 2 diabetes mellitus. Lancet 361:226–228

    Article  PubMed  CAS  Google Scholar 

  54. Chandran M, Phillips SA, Ciaraldi T, Henry RR (2003) Adiponectin: more than just another fat cell hormone? Diabetes Care 26:2442–2450

    Article  PubMed  CAS  Google Scholar 

  55. Swarbrick MM, Havel PJ (2008) Physiological pharmacological and nutritional regulation of circulating adiponectin concentrations in humans. Metab Syndr Relat Disord 6:87–102

    Article  PubMed  CAS  Google Scholar 

  56. Samaras K, Botelho NK, Chisholm DJ, Lord RV (2010) Subreast cancerutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity 18:884–889

    Article  PubMed  CAS  Google Scholar 

  57. Viljanen AP, Lautamaki R, Jarvisalo M, Parkkola R, Huupponen R, Lehtimaki T, Ronnemaa T, Raitakari OT, Iozzo P, Nuutila P (2009) Effects of weight loss on visceral and abdominal subreast cancerutaneous adipose tissue blood-flow and insulin-mediated glucose uptake in healthy obese subjects. Ann Med 41:152–160

    Article  PubMed  CAS  Google Scholar 

  58. Dalamaga M, Migdalis I, Fargnoli JL, Papadavid E, Bloom E, Mitsiades N, Karmaniolas K, Pelecanos N, Tseleni-Balafouta S, Onyssiou-Asteriou A, Mantzoros CS (2009) Pancreatic cancer expresses adiponectin receptors and is associated with hypoleptinemia and hyperadiponectinemia: a case-control study. Cancer Causes Control 20:625–633

    Article  PubMed  Google Scholar 

  59. Stolzenberg-Solomon RZ, Weinstein S, Pollak M, Tao Y, Taylor PR, Virtamo J, Albanes D (2008) Prediagnostic adiponectin concentrations and pancreatic cancer risk in male smokers. Am J Epidemiol 168:1047–1055

    Article  PubMed  Google Scholar 

  60. Chang MC, Chang YT, Su TC, Yang WS, Chen CL, Tien YW, Liang PC, Wei SC, Wong JM (2007) Adiponectin as a potential differential marker to distinguish pancreatic cancer and chronic pancreatitis. Pancreas 35:16–21

    Article  PubMed  CAS  Google Scholar 

  61. Tworoger SS, Eliassen AH, Kelesidis T, Colditz GA, Willett WC, Mantzoros CS, Hankinson SE (2007) Plasma adiponectin concentrations and risk of incident breast cancer. J Clin Endocrinol Metab 92:1510–1516

    Article  PubMed  CAS  Google Scholar 

  62. Grossmann ME, Ray A, Nkhata KJ, Malakhov DA, Rogozina OP, Dogan S, Cleary MP (2010) Obesity and breast cancer: status of leptin and adiponectin in pathological processes. Cancer Metastasis Rev 29:641–653

    Article  PubMed  CAS  Google Scholar 

  63. Cleary MP, Grossmann ME, Ray A (2010) Effect of obesity on breast cancer development. Vet Pathol 47:202–213

    Article  PubMed  CAS  Google Scholar 

  64. Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Lindsay RS, Youngren JF, Havel PJ, Pratley RE, Bogardus C, Tataranni PA (2002) Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans. Diabetes 51:1884–1888

    Article  PubMed  CAS  Google Scholar 

  65. Ouchi N, Walsh K (2007) Adiponectin as an anti-inflammatory factor. Clin Chim Acta 380:24–30

    Article  PubMed  CAS  Google Scholar 

  66. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    Article  PubMed  CAS  Google Scholar 

  67. Zakikhani M, Dowling RJ, Sonenberg N, Pollak MN (2008) The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev Res 1:369–375

    Article  CAS  Google Scholar 

  68. Brakenhielm E, Veitonmaki N, Cao R, Kihara S, Matsuzawa Y, Zhivotovsky B, Funahashi T, Cao Y (2004) Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A 101:2476–2481

    Article  PubMed  CAS  Google Scholar 

  69. Margetic S, Gazzola C, Pegg GG, Hill RA (2002) Leptin: a review of its peripheral actions and interactions. Int J Obes Relat Metab Disord 26:1407–1433

    Article  PubMed  CAS  Google Scholar 

  70. Artac M, Altundag K (2011) Leptin and breast cancer: an overview. Med Oncol 29(3):1510–1514

    Google Scholar 

  71. Cascio S, Bartella V, Auriemma A, Johannes GJ, Russo A, Giordano A, Surmacz E (2008) Mechanism of leptin expression in breast cancer cells: role of hypoxia-inducible factor-1alpha. Oncogene 27:540–547

    Article  PubMed  CAS  Google Scholar 

  72. Koda M, Sulkowska M, Kanczuga-Koda L, Jarzabek K (2007) Sulkowskis expression of leptin and its receptor in female breast cancer in relation with selected apoptotic markers. Folia Histochem Cytobiol 45(1):S187–S191

    PubMed  Google Scholar 

  73. Koda M, Sulkowska M, Kanczuga-Koda L, Cascio S, Colucci G, Russo A, Surmacz E, Sulkowski S (2007) Expression of the obesity hormone leptin and its receptor correlates with hypoxia-inducible factor-1 alpha in human colorectal cancer. Ann Oncol 18(6):116–119

    Article  Google Scholar 

  74. White PB, True EM, Ziegler KM, Wang SS, Swartz-Basile DA, Pitt HA, Zyromski NJ (2010) Insulin leptin and tumoral adipocytes promote murine pancreatic cancer growth. J Gastrointest Surg 14(12):1888–1893

    Google Scholar 

  75. Krakoff J, Funahashi T, Stehouwer CD, Schalkwijk CG, Tanaka S, Matsuzawa Y, Kobes S, Tataranni PA, Hanson RL, Knowler WC, Lindsay RS (2003) Inflammatory markers adiponectin and risk of type 2 diabetes in the Pima Indian. Diabetes Care 26:1745–1751

    Article  PubMed  CAS  Google Scholar 

  76. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL (1996) Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 334:292–295

    Article  PubMed  CAS  Google Scholar 

  77. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621

    Article  PubMed  CAS  Google Scholar 

  78. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  79. Guo S, Liu M, Wang G, Torroella-Kouri M, Gonzalez-Perez RR (2012) Oncogenic role and therapeutic target of leptin signaling in breast cancer and cancer stem cells. Biochim Biophys Acta 1825(2):207–222

    Google Scholar 

  80. van Kruijsdijk RC, van der WE, Visseren FL (2009) Obesity and cancer: the role of dysfunctional adipose tissue. Cancer Epidemiol Biomarkers Prev 18:2569–2578

    Article  PubMed  CAS  Google Scholar 

  81. Ramos EJ, Xu Y, Romanova I, Middleton F, Chen C, Quinn R, Inui A, Das U, Meguid MM (2003) Is obesity an inflammatory disease? Surgery 134:329–335

    Article  PubMed  Google Scholar 

  82. Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112:1785–1788

    PubMed  CAS  Google Scholar 

  83. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB (1999) Elevated C-reactive protein levels in overweight and obese adults. JAMA 282:2131–2135

    Article  PubMed  CAS  Google Scholar 

  84. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB (2001) Low-grade systemic inflammation in overweight children. Pediatrics 107:E13

    Article  PubMed  CAS  Google Scholar 

  85. Fogarty AW, Glancy C, Jones S, Lewis SA, McKeever TM, Britton JR (2008) A prospective study of weight change and systemic inflammation over 9 years. Am J Clin Nutr 87:30–35

    PubMed  CAS  Google Scholar 

  86. Chavey C, Mari B, Monthouel MN, Bonnafous S, Anglard P, Van OE, Tartare-Deckert S (2003) Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem 278:11888–11896

    Article  PubMed  CAS  Google Scholar 

  87. Davies FE, Rollinson SJ, Rawstron AC, Roman E, Richards S, Drayson M, Child JA, Morgan GJ (2000) High-producer haplotypes of tumor necrosis factor alpha and lymphotoxin alpha are associated with an increased risk of myeloma and have an improved progression-free survival after treatment. J Clin Oncol 18:2843–2851

    PubMed  CAS  Google Scholar 

  88. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  PubMed  CAS  Google Scholar 

  89. Il’yasova D, Colbert LH, Harris TB, Newman AB, Bauer DC, Satterfield S, Kritchevsky SB (2005) Circulating levels of inflammatory markers and cancer risk in the health aging and body composition cohort. Cancer Epidemiol Biomarkers Prev 14:2413–2418

    Article  PubMed  Google Scholar 

  90. Kim S, Keku TO, Martin C, Galanko J, Woosley JT, Schroeder JC, Satia JA, Halabi S, Sandler RS (2008) Circulating levels of inflammatory cytokines and risk of colorectal adenomas. Cancer Res 68:323–328

    Article  PubMed  CAS  Google Scholar 

  91. Kulbe H, Thompson R, Wilson JL, Robinson S, Hagemann T, Fatah R, Gould D, Ayhan A, Balkwill F (2007) The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 67:585–592

    Article  PubMed  CAS  Google Scholar 

  92. Bruce WR, Wolever TM, Giacca A (2000) Mechanisms linking diet and colorectal cancer: the possible role of insulin resistance. Nutr Cancer 37:19–26

    Article  PubMed  CAS  Google Scholar 

  93. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761

    PubMed  CAS  Google Scholar 

  94. Gago-Dominguez M, Castelao JE, Pike MC, Sevanian A, Haile RW (2005) Role of lipid peroxidation in the epidemiology and prevention of breast cancer. Cancer Epidemiol Biomarkers Prev 14:2829–2839

    Article  PubMed  CAS  Google Scholar 

  95. Gago-Dominguez M, Jiang X, Castelao JE (2007) Lipid peroxidation oxidative stress genes and dietary factors in breast cancer protection: a hypothesis. Breast Cancer Res 9:201

    Article  PubMed  CAS  Google Scholar 

  96. Robertson RP, Harmon J, Tran PO, Poitout V (2004) Beta-cell glucose toxicity lipotoxicity and chronic oxidative stress in type 2 diabetes. Diabetes 53(Suppl 1):S119–S124

    Article  PubMed  CAS  Google Scholar 

  97. Katiyar SK, Meeran SM (2007) Obesity increases the risk of UV radiation-induced oxidative stress and activation of MAPK and NF-kappaB signaling. Free Radic Biol Med 42:299–310

    Article  PubMed  CAS  Google Scholar 

  98. Dickson RB, Thompson EW, Lippman ME (1990) Regulation of proliferation invasion and growth factor synthesis in breast cancer by steroids. J Steroid Biochem Mol Biol 37:305–316

    Article  PubMed  CAS  Google Scholar 

  99. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34

    PubMed  CAS  Google Scholar 

  100. Pugeat M, Crave JC, Elmidani M, Nicolas MH, Garoscio-Cholet M, Lejeune H, Dechaud H, Tourniaire J (1991) Pathophysiology of sex hormone binding globulin: relation to insulin. J Steroid Biochem Mol Biol 40:841–849

    Article  PubMed  CAS  Google Scholar 

  101. Siiteri PK (1987) Adipose tissue as a source of hormones. Am J Clin Nutr 45:277–282

    PubMed  CAS  Google Scholar 

  102. Kaaks R, Lukanova A, Kurzer MS (2002) Obesity endogenous hormones and endometrial cancer risk: a synthetic review. Cancer Epidemiol Biomarkers Prev 11:1531–1543

    PubMed  CAS  Google Scholar 

  103. Kaaks R, Berrino F, Key T, Rinaldi S, Dossus L, Biessy C, Secreto G, Amiano P, Bingham S, Boeing H, De Bueno Mesquita HB, Chang-Claude J, Clavel-Chapelon F, Fournier A, van Gils CH, Gonzalez CA, Gurrea AB, Critselis E, Khaw KT, Krogh V, Lahmann PH, Nagel G, Olsen A, Onland-Moret NC, Overvad K, Palli D, Panico S, Peeters P, Quiros JR, Roddam A, Thiebaut A, Tjonneland A, Chirlaque MD, Trichopoulou A, Trichopoulos D, Tumino R, Vineis P, Norat T, Ferrari P, Slimani N, Riboli E (2005) Serum sex steroids in premenopausal women and breast cancer risk within the European prospective investigation into cancer and nutrition. J Natl Cancer Inst 97:755–765

    Article  PubMed  CAS  Google Scholar 

  104. Key TJ (1999) Serum oestradiol and breast cancer risk. Endocr Relat Cancer 6:175–180

    Article  PubMed  CAS  Google Scholar 

  105. Gort EH, Groot AJ, van der WE, van Diest PJ, Vooijs MA (2008) Hypoxic regulation of metastasis via hypoxia-inducible factors. Curr Mol Med 8:60–67

    Article  PubMed  CAS  Google Scholar 

  106. Jiang BH, Agani F, Passaniti A, Semenza GL (1997) V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 57:5328–5335

    PubMed  CAS  Google Scholar 

  107. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59:5830–5835

    PubMed  CAS  Google Scholar 

  108. Marignol L, Coffey M, Lawler M, Hollywood D (2008) Hypoxia in prostate cancer: a powerful shield against tumour destruction? Cancer Treat Rev 34:313–327

    Article  PubMed  CAS  Google Scholar 

  109. Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH (2012) The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. Biochim Biophys Acta 1826(2):272–296

    Google Scholar 

  110. Vaupel P, Hoeckel M (1999) Predictive power of the tumor oxygenation status. Adv Exp Med Biol 471:533–539

    Article  PubMed  CAS  Google Scholar 

  111. Feldmann HJ, Molls M, Vaupel P (1999) Blood flow and oxygenation status of human tumors. Clin Investig Strahlenther Onkol 175:1–9

    Article  CAS  Google Scholar 

  112. Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316

    Article  PubMed  CAS  Google Scholar 

  113. Trayhurn P, Wang B, Wood IS (2008) Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr 100:227–235

    Article  PubMed  CAS  Google Scholar 

  114. Ye J, Gao Z, Yin J, He Q (2007) Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 293:E1118–E1128

    Google Scholar 

  115. Lolmede K, Durand de SF V, Galitzky J, Lafontan M, Bouloumie A (2003) Effects of hypoxia on the expression of proangiogenic factors in differentiated 3T3-F442A adipocytes. Int J Obes Relat Metab Disord 27:1187–1195

    Article  PubMed  CAS  Google Scholar 

  116. Silha JV, Krsek M, Sucharda P, Murphy LJ (2005) Angiogenic factors are elevated in overweight and obese individuals. Int J Obes 29:1308–1314

    Article  CAS  Google Scholar 

  117. Chowdhury TA (2010) Diabetes and cancer. QJM 103(12):905–915

    Google Scholar 

  118. Giaginis C, Katsamangou E, Tsourouflis G, Zizi-Serbetzoglou D, Kouraklis G, Theocharis S (2009) Peroxisome proliferator-activated receptor-gamma and retinoid X receptor-alpha expression in pancreatic ductal adenocarcinoma: association with clinicopathological parameters tumor proliferative capacity and patients’ survival. Med Sci Monit 15:BR148–BR156

    Google Scholar 

  119. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, Pollak M, Regensteiner JG, Yee D (2010) Diabetes and cancer: a consensus report. Diabetes Care 33:1674–1685

    Article  PubMed  Google Scholar 

  120. Grote VA, Becker S, Kaaks R (2010) Diabetes mellitus type 2—an independent risk factor for cancer? Exp Clin Endocrinol Diabetes 118:4–8

    Article  PubMed  CAS  Google Scholar 

  121. Schott S, Schneeweiss A, Sohn C (2010) Breast cancer and diabetes mellitus. Exp Clin Endocrinol Diabetes 118(10):673–677

    Google Scholar 

  122. Peairs KS, Barone BB, Snyder CF, Yeh HC, Stein KB, Derr RL, Brancati FL, Wolff AC (2011) Diabetes mellitus and breast cancer outcomes: a systematic review and meta-analysis. J Clin Oncol 29:40–46

    Article  PubMed  Google Scholar 

  123. Fleming JB, Gonzalez RJ, Petzel MQ, Lin E, Morris JS, Gomez H, Lee JE, Crane CH, Pisters PW, Evans DB (2009) Influence of obesity on cancer-related outcomes after pancreatectomy to treat pancreatic adenocarcinoma. Arch Surg 144:216–221

    Article  PubMed  Google Scholar 

  124. Srokowski TP, Fang S, Hortobagyi GN, Giordano SH (2009) Impact of diabetes mellitus on complications and outcomes of adjuvant chemotherapy in older patients with breast cancer. J Clin Oncol 27:2170–2176

    Article  PubMed  Google Scholar 

  125. van de Poll-Franse LV, Houterman S, Janssen-Heijnen ML, Dercksen MW, Coebergh JW, Haak HR (2007) Less aggressive treatment and worse overall survival in cancer patients with diabetes: a large population based analysis. Int J Cancer 120:1986–1992

    Article  PubMed  CAS  Google Scholar 

  126. Chen WW, Shao YY, Shau WY, Lin ZZ, Lu YS, Chen HM, Kuo RN, Cheng AL, Lai MS (2012) The impact of diabetes mellitus on prognosis of early breast cancer in Asia. Oncology 17:485–491

    Article  Google Scholar 

  127. Butler AE, Galasso R, Matveyenko A, Rizza RA, Dry S, Butler PC (2010) Pancreatic duct replication is increased with obesity and type 2 diabetes in humans. Diabetologia 53:21–26

    Article  PubMed  CAS  Google Scholar 

  128. Gapstur SM, Gann PH, Lowe W, Liu K, Colangelo L, Dyer A (2000) Abnormal glucose metabolism and pancreatic cancer mortality. JAMA 283:2552–2558

    Article  PubMed  CAS  Google Scholar 

  129. Renehan AG, Berster JM (2008) Insulin and cancer: report of the proceedings of the first international workshop, Dusseldorf, Germany, 27–28 Oct 2007. Pediatr Endocrinol Rev 5:810–816

    Google Scholar 

  130. Williams GP (2010) The role of oestrogen in the pathogenesis of obesity type 2 diabetes breast cancer and prostate disease. Eur J Cancer Prev 19:256–271

    Article  PubMed  CAS  Google Scholar 

  131. Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  PubMed  CAS  Google Scholar 

  132. Hemkens LG, Grouven U, Bender R, Gunster C, Gutschmidt S, Selke GW, Sawicki PT (2009) Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: a cohort study. Diabetologia 52:1732–1744

    Article  PubMed  CAS  Google Scholar 

  133. Simon D, Balkau B (2010) Diabetes mellitus hyperglycaemia and cancer. Diabetes Metab 36:182–191

    Article  PubMed  CAS  Google Scholar 

  134. Kornmann M, Maruyama H, Bergmann U, Tangvoranuntakul P, Beger HG, White MF, Korc M (1998) Enhanced expression of the insulin receptor substrate-2 docking protein in human pancreatic cancer. Cancer Res 58:4250–4254

    PubMed  CAS  Google Scholar 

  135. Nakamura K, Sasajima J, Mizukami Y, Sugiyama Y, Yamazaki M, Fujii R, Kawamoto T, Koizumi K, Sato K, Fujiya M, Sasaki K, Tanno S, Okumura T, Shimizu N, Kawabe J, Karasaki H, Kono T, Ii M, Bardeesy N, Chung DC, Kohgo Y (2010) Hedgehog promotes neovascularization in pancreatic cancers by regulating Ang-1 and IGF-1 expression in bone-marrow derived pro-angiogenic cells. PLoS One 5:e8824

    Article  PubMed  CAS  Google Scholar 

  136. Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M (2004) Insulin-like growth factor (IGF)-I IGF binding protein-3 and cancer risk: Systematic review and meta-regression analysis. Lancet 363:1346–1353

    Article  PubMed  CAS  Google Scholar 

  137. Dallas NA, Xia L, Fan F, Gray MJ, Gaur P, van BG, Samuel S, Kim MP, Lim SJ, Ellis LM (2009) Chemoresistant colorectal cancer cells the cancer stem cell phenotype and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Res 69:1951–1957

    Article  PubMed  CAS  Google Scholar 

  138. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, DePinho RA, Montminy M, Cantley LC (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310:1642–1646

    Article  PubMed  CAS  Google Scholar 

  139. Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29:254–258

    Article  PubMed  Google Scholar 

  140. Heikkinen S, Auwerx J, Argmann CA (2007) PPARgamma in human and mouse physiology. Biochim Biophys Acta 1771:999–1013

    Article  PubMed  CAS  Google Scholar 

  141. Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ (2010) Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33:322–326

    Article  PubMed  CAS  Google Scholar 

  142. Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM (2009) New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32:1620–1625

    Article  PubMed  CAS  Google Scholar 

  143. Monami M, Lamanna C, Balzi D, Marchionni N, Mannucci E (2009) Sulphonylureas and cancer: a case-control study. Acta Diabetol 46:279–284

    Article  PubMed  CAS  Google Scholar 

  144. Cazzaniga M, Bonanni B, Guerrieri-Gonzaga A, Decensi A (2009) Is it time to test metformin in breast cancer clinical trials? Cancer Epidemiol Biomarkers Prev 18:701–705

    Article  PubMed  CAS  Google Scholar 

  145. Goodwin PJ, Ligibel JA, Stambolic V (2009) Metformin in breast cancer: time for action. J Clin Oncol 27:3271–3273

    Article  PubMed  CAS  Google Scholar 

  146. Martin-Castillo B, Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2010) Metformin and cancer: doses mechanisms and the dandelion and hormetic phenomena. Cell Cycle 9(6):1057–1064

    Google Scholar 

  147. Hosono K, Endo H, Takahashi H, Sugiyama M, Sakai E, Uchiyama T, Suzuki K, Iida H, Sakamoto Y, Yoneda K, Koide T, Tokoro C, Abe Y, Inamori M, Nakagama H, Nakajima A (2010) Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. Cancer Prev Res 3:1077–1083

    Article  CAS  Google Scholar 

  148. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, Hsu L, Hung MC, Hortobagyi GN, Gonzalez-Angulo AM (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27:3297–3302

    Article  PubMed  CAS  Google Scholar 

  149. Guppy A, Jamal-Hanjani M, Pickering L (2011) Anticancer effects of metformin and its potential use as a therapeutic agent for breast cancer. Future Oncol 7:727–736

    Article  PubMed  CAS  Google Scholar 

  150. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69:7507–7511

    Article  PubMed  CAS  Google Scholar 

  151. Vazquez-Martin A, Oliveras-Ferraros C, Cufi S, Martin-Castillo B, Menendez JA (2010) Metformin and energy metabolism in breast cancer: from insulin physiology to tumour-initiating stem cells. Curr Mol Med 10:674–691

    Article  PubMed  CAS  Google Scholar 

  152. Anisimov VN, Egormin PA, Bershtein LM, Zabezhinskii MA, Piskunova TS, Popovich IG, Semenchenko AV (2005) Metformin decelerates aging and development of mammary tumors in HER-2/neu transgenic mice. Bull Exp Biol Med 139:721–723

    Article  PubMed  CAS  Google Scholar 

  153. Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina TE, Semenchenko AV, Provinciali M, Re F, Franceschi C (2005) Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 40:685–693

    Article  PubMed  CAS  Google Scholar 

  154. Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE, Thor AD (2009) Metformin induces unique biological and molecular responses in triple negative breast cancer cells. Cell Cycle 8:2031–2040

    Article  PubMed  CAS  Google Scholar 

  155. Tomimoto A, Endo H, Sugiyama M, Fujisawa T, Hosono K, Takahashi H, Nakajima N, Nagashima Y, Wada K, Nakagama H, Nakajima A (2008) Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci 99:2136–2141

    Article  PubMed  CAS  Google Scholar 

  156. Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N (2007) Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res 67:10804–10812

    Article  PubMed  CAS  Google Scholar 

  157. Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M (2006) Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66:10269–10273

    Article  PubMed  CAS  Google Scholar 

  158. Ben SI, Laurent K, Loubat A, Giorgetti-Peraldi S, Colosetti P, Auberger P, Tanti JF, Le Marchand-Brustel Y, Bost F (2008) The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 27:3576–3586

    Article  CAS  Google Scholar 

  159. Ben SI, Le Marchand-Brustel Y, Tanti JF, Bost F (2010) Metformin in cancer therapy: a new perspective for an old antidiabetic drug? Mol Cancer Ther 9:1092–1099

    Article  CAS  Google Scholar 

  160. Feng Z, Hu W, de SE, Teresky AK, Jin S, Lowe S, Levine AJ (2007) The regulation of AMPK beta1 TSC2 and PTEN expression by p53: stress cell and tissue specificity and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 67:3043–3053

    Article  PubMed  CAS  Google Scholar 

  161. Guigas B, Bertrand L, Taleux N, Foretz M, Wiernsperger N, Vertommen D, Andreelli F, Viollet B, Hue L (2006) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 55:865–874

    Article  PubMed  CAS  Google Scholar 

  162. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18:283–293

    Google Scholar 

  163. Okoshi R, Ozaki T, Yamamoto H, Ando K, Koida N, Ono S, Koda T, Kamijo T, Nakagawara A, Kizaki H (2008) Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem 283:3979–3987

    Article  PubMed  CAS  Google Scholar 

  164. Ersoy C, Kiyici S, Budak F, Oral B, Guclu M, Duran C, Selimoglu H, Erturk E, Tuncel E, Imamoglu S (2008) The effect of metformin treatment on VEGF and PAI-1 levels in obese type 2 diabetic patients. Diabetes Res Clin Pract 81:56–60

    Article  PubMed  CAS  Google Scholar 

  165. Lund SS, Tarnow L, Stehouwer CD, Schalkwijk CG, Teerlink T, Gram J, Winther K, Frandsen M, Smidt UM, Pedersen O, Parving HH, Vaag AA (2008) Impact of metformin versus repaglinide on non-glycaemic cardiovascular risk markers related to inflammation and endothelial dysfunction in non-obese patients with type 2 diabetes. Eur J Endocrinol 158:631–641

    Article  PubMed  CAS  Google Scholar 

  166. Huang NL, Chiang SH, Hsueh CH, Liang YJ, Chen YJ, Lai LP (2009) Metformin inhibits TNF-alpha-induced IkappaB kinase phosphorylation IkappaB-alpha degradation and IL-6 production in endothelial cells through PI3K-dependent AMPK phosphorylation. Int J Cardiol 134:169–175

    Article  PubMed  Google Scholar 

  167. Kisfalvi K, Eibl G, Sinnett-Smith J, Rozengurt E (2009) Metformin disrupts crosstalk between G protein-coupled receptor and insulin receptor signaling systems and inhibits pancreatic cancer growth. Cancer Res 69:6539–6545

    Article  PubMed  CAS  Google Scholar 

  168. Rozengurt E, Sinnett-Smith J, Kisfalvi K (2010) Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin Cancer Res 16:2505–2511

    Article  PubMed  CAS  Google Scholar 

  169. Vazquez-Martin A, Oliveras-Ferraros C, Barco SD, Martin-Castillo B, Menendez JA (2010) The anti-diabetic drug metformin suppresses self-renewal and proliferation of trastuzumab-resistant tumor-initiating breast cancer stem cells. Breast Cancer Res Treat 126(2):355–364

    Google Scholar 

  170. Bao B, Wang Z, Ali S, Ahmad A, Azmi AS, Sarkar SH, Banerjee S, Kong D, Li Y, Thakur S, Sarkar FH (2012) Metformin inhibits cell proliferation migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res 5:355–364

    Article  CAS  Google Scholar 

  171. DeSano JT, Xu L (2009) Micro RNA regulation of cancer stem cells and therapeutic implications. AAPS J 11:682–692

    Article  PubMed  CAS  Google Scholar 

  172. Perera RJ, Ray A (2007) MicroRNAs in the search for understanding human diseases. Bio Drugs 21:97–104

    CAS  Google Scholar 

  173. Ali S, Ahmad A, Banerjee S, Padhye S, Dominiak K, Schaffert JM, Wang Z, Philip PA, Sarkar FH (2010) Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Res 70:3606–3617

    Article  PubMed  CAS  Google Scholar 

  174. Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M (2008) MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 12:2171–2176

    Article  PubMed  Google Scholar 

  175. Kent OA, Mullendore M, Wentzel EA, Lopez-Romero P, Tan AC, Alvarez H, West K, Ochs MF, Hidalgo M, Arking DE, Maitra A, Mendell JT (2009) A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biol Ther 8:2013–2024

    Article  PubMed  CAS  Google Scholar 

  176. Li Y, Kong D, Wang Z, Sarkar FH (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 27:1027–1041

    Article  PubMed  CAS  Google Scholar 

  177. Rachagani S, Kumar S, Batra SK (2010) MicroRNA in pancreatic cancer: pathological diagnostic and therapeutic implications. Cancer Lett 292:8–16

    Article  PubMed  CAS  Google Scholar 

  178. Sarkar FH, Li Y, Wang Z, Kong D, Ali S (2010) Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Update 13:57–66

    Article  CAS  Google Scholar 

  179. Zhang B, Pan X, Cobb GP, Anderson TA (2007) MicroRNAs as oncogenes and tumor suppressors. Dev Biol 302:1–12

    Article  PubMed  CAS  Google Scholar 

  180. Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N, Nabae T, Takahata S, Toma H, Nagai E, Tanaka M (2009) MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation invasion and chemoresistance. Mol Cancer Ther 8(5):1067–1074

    Google Scholar 

  181. Olson P, Lu J, Zhang H, Shai A, Chun MG, Wang Y, Libutti SK, Nakakura EK, Golub TR, Hanahan D (2009) MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes Dev 23:2152–2165

    Article  PubMed  CAS  Google Scholar 

  182. Dey N, Das F, Mariappan MM, Mandal CC, Ghosh-Choudhury N, Kasinath BS, Choudhury GG (2011) MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1 resulting in renal cell pathology in diabetes. J Biol Chem 286:25586–25603

    Article  PubMed  CAS  Google Scholar 

  183. Chartoumpekis DV, Zaravinos A, Ziros PG, Iskrenova RP, Psyrogiannis AI, Kyriazopoulou VE, Habeos IG (2012) Differential expression of MicroRNAs in adipose tissue after long-term high-fat diet-induced obesity in mice. PLoS One 7:e34872

    Article  PubMed  CAS  Google Scholar 

  184. He A, Zhu L, Gupta N, Chang Y, Fang F (2007) Overexpression of micro ribonucleic acid 29 highly up-regulated in diabetic rats leads to insulin resistance in 3T3-L1 adipocytes. Mol Endocrinol 21:2785–2794

    Article  PubMed  CAS  Google Scholar 

  185. Heneghan HM, Miller N, Kerin MJ (2010) Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 11:354–361

    Article  PubMed  CAS  Google Scholar 

  186. Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, Dong Q, Pang Z, Guan Q, Gao L, Zhao J, Zhao L (2010) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48(1):61–69

    Google Scholar 

  187. Frost RJ, Olson EN (2011) Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci U S A 108:21075–21080

    Article  PubMed  CAS  Google Scholar 

  188. Zhu H, Shyh-Chang N, Segre AV, Shinoda G, Shah SP, Einhorn WS, Takeuchi A, Engreitz JM, Hagan JP, Kharas MG, Urbach A, Thornton JE, Triboulet R, Gregory RI, Altshuler D, Daley GQ (2011) The Lin28/let-7 axis regulates glucose metabolism. Cell 147:81–94

    Article  PubMed  CAS  Google Scholar 

  189. Qian P, Zuo Z, Wu Z, Meng X, Li G, Wu Z, Zhang W, Tan S, Pandey V, Yao Y, Wang P, Zhao L, Wang J, Wu Q, Song E, Lobie PE, Yin Z, Zhu T (2011) Pivotal role of reduced let-7 g expression in breast cancer invasion and metastasis. Cancer Res 71:6463–6474

    Article  PubMed  CAS  Google Scholar 

  190. Yun J, Frankenberger CA, Kuo WL, Boelens MC, Eves EM, Cheng N, Liang H, Li WH, Ishwaran H, Minn AJ, Rosner MR (2011) Signalling pathway for RKIP and Let-7 regulates and predicts metastatic breast cancer. EMBO J 30:4500–4514

    Article  PubMed  CAS  Google Scholar 

  191. Kolfschoten IG, Roggli E, Nesca V, Regazzi R (2009) Role and therapeutic potential of microRNAs in diabetes. Diabetes Obes Metab 11(4):118–129

    Article  PubMed  CAS  Google Scholar 

  192. Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57:2728–2736

    Article  PubMed  CAS  Google Scholar 

  193. Vogt M, Munding J, Gruner M, Liffers ST, Verdoodt B, Hauk J, Steinstraesser L, Tannapfel A, Hermeking H (2011) Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal pancreatic mammary ovarian urothelial and renal cell carcinomas and soft tissue sarcomas. Virchows Arch 458:313–322

    Article  PubMed  Google Scholar 

  194. Bockmeyer CL, Christgen M, Muller M, Fischer S, Ahrens P, Langer F, Kreipe H, Lehmann U (2011) MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res Treat 130:735–745

    Article  PubMed  CAS  Google Scholar 

  195. Kastl L, Brown I, Schofield AC (2012) miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat 131:445–454

    Article  PubMed  CAS  Google Scholar 

  196. Mackiewicz M, Huppi K, Pitt JJ, Dorsey TH, Ambs S, Caplen NJ (2011) Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA. Breast Cancer Res Treat 130:663–679

    Article  PubMed  CAS  Google Scholar 

  197. Peurala H, Greco D, Heikkinen T, Kaur S, Bartkova J, Jamshidi M, Aittomaki K, Heikkila P, Bartek J, Blomqvist C, Butzow R, Nevanlinna H (2011) MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer. PLoS One 6:e26122

    Article  PubMed  CAS  Google Scholar 

  198. Svoboda M, Sana J, Redova M, Navratil J, Palacova M, Fabian P, Slaby O, Vyzula R (2012) MiR-34b is associated with clinical outcome in triple-negative breast cancer patients. Diagn Pathol 7:31

    Article  PubMed  CAS  Google Scholar 

  199. Yu X, Zhang X, DhakalI B, Beggs M, Kadlubar S, Luo D (2012) Induction of cell proliferation and survival genes by estradiol-repressed microRNAs in breast cancer cells. BMC Cancer 12:29

    Article  PubMed  CAS  Google Scholar 

  200. Herrera BM, Lockstone HE, Taylor JM, Ria M, Barrett A, Collins S, Kaisaki P, Argoud K, Fernandez C, Travers ME, Grew JP, Randall JC, Gloyn AL, Gauguier D, McCarthy MI, Lindgren CM (2010) Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes. Diabetologia 53:1099–1109

    Article  PubMed  CAS  Google Scholar 

  201. Cochrane DR, Jacobsen BM, Connaghan KD, Howe EN, Bain DL, Richer JK (2012) Progestin regulated miRNAs that mediate progesterone receptor action in breast cancer. Mol Cell Endocrinol 355:15–24

    Article  PubMed  CAS  Google Scholar 

  202. Gebeshuber CA, Zatloukal K, Martinez J (2009) miR-29a suppresses tristetraprolin which is a regulator of epithelial polarity and metastasis. EMBO Rep 10:400–405

    Article  PubMed  CAS  Google Scholar 

  203. Lynn FC (2009) Meta-regulation: microRNA regulation of glucose and lipid metabolism. Trends Endocrinol Metab 20:452–459

    Article  PubMed  CAS  Google Scholar 

  204. de Souza Rocha SP, Breiling A, Gupta N, Malekpour M, Youns M, Omranipour R, Malekpour F, Volinia S, Croce CM, Najmabadi H, Diederichs S, Sahin O, Mayer D, Lyko F, Hoheisel JD, Riazalhosseini Y (2010) Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells. Cancer Res 70:9175–9184

    Article  CAS  Google Scholar 

  205. Giricz O, Reynolds PA, Ramnauth A, Liu C, Wang T, Stead L, Childs G, Rohan T, Shapiro N, Fineberg S, Kenny PA, Loudig O (2012) Hsa-miR-375 is differentially expressed during breast lobular neoplasia and promotes loss of mammary acinar polarity. J Pathol 226:108–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Puschelberg and Guido foundations for their generous financial contribution. We also thank Ms. Ahmedi Bee Fnu and Mr. Evan Bao for the technical assistance.

Grant Support: National Cancer Institute, NIH grants 5R01CA131151, 5R01CA132794 and 1R01CA154321 (F.H. Sarkar), DOD Exploration-Hypothesis Development Award PC101482 (B Bao).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bao, B. et al. (2013). The Biology of the Deadly Love Connection Between Obesity, Diabetes, and Breast Cancer. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5647-6_7

Download citation

Publish with us

Policies and ethics