Skip to main content

Breast Cancer Stem Cells and miRNAs

  • Chapter
  • First Online:
Breast Cancer Metastasis and Drug Resistance
  • 2563 Accesses

Abstract

Breast cancer remains one of the leading causes of cancer-related deaths in women. Following the initial diagnosis and treatment, a significant number of patients suffer eventual relapse characterized by chemoresistant form of the disease and poor prognosis. For this reason, there is an urgent need to discover new disease targets for successful therapy outcomes. Breast cancer stem cells (bCSCs) are a niche population that is chemoresistant, possess self-renewal capacity and contribute to malignant disease and poor clinical outcomes. In humans, bCSCs express increased levels of ALDH and cancer stem-cell marker CD44. Several studies have linked these cells to advanced breast cancer. miRNAs are small non coding RNA molecules that control gene activity via post-transcriptional regulation. There is evidence that miRNAs are involved in survival and in maintaining self-renewal capacity and chemoresistant potential of bCSCs. Thus, it may be possible to devise novel and highly effective therapy regimens that rely on identifying specific miRNAs and targeting them to prevent chemoresistance and relapse. While treatment strategies relying on replacement of antitumor miRNAs or inhibition of oncogenic miRNAs are still in their infancy, there is increasing excitement toward this RNAi approach to treat breast cancer. Many groups have started combining anti-miRNA molecular drugs with chemotherapy drugs to prevent chemoresistance. Technical and experimental strategies and advances reported here will improve the clinical outcomes for breast cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel R et al (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 6:220–241

    Google Scholar 

  2. DeSantis C, Siegel R, Bandi P, Jemal A (2011) Breast cancer statistics, 2011. CA Cancer J Clin 61:409–418

    Article  PubMed  Google Scholar 

  3. Kutanzi KR, Yurchenko OV, Beland FA, Checkhun VF, Pogribny IP (2011) MicroRNA-mediated drug resistance in breast cancer. Clin Epigenetics 2:171–185

    Article  PubMed  CAS  Google Scholar 

  4. Aebi S et al (1996) Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Res 56:3087–3090

    PubMed  CAS  Google Scholar 

  5. Ugnat AM, Xie L, Morriss J, Semenciw R, Mao Y (2004) Survival of women with breast cancer in Ottawa, Canada: variation with age, stage, histology, grade and treatment. Br J Cancer 90:1138–1143

    Article  PubMed  CAS  Google Scholar 

  6. Baguley BC (2010) Multiple drug resistance mechanisms in cancer. Mol Biotechnol 46:308–316

    Article  PubMed  CAS  Google Scholar 

  7. Allen JD, Van Dort SC, Buitelaar M, van Tellingen O, Schinkel AH (2003) Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res 63:1339–1344

    PubMed  CAS  Google Scholar 

  8. Komatani H et al (2001) Identification of breast cancer resistant protein/mitoxantrone resistance/placenta-specific, ATP-binding cassette transporter as a transporter of NB-506 and J-107088, topoisomerase I inhibitors with an indolocarbazole structure. Cancer Res 61:2827–2832

    PubMed  CAS  Google Scholar 

  9. Borst P, Evers R, Kool M, Wijnholds J (2000) A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 92:1295–1302

    Article  PubMed  CAS  Google Scholar 

  10. Baker EK, El-Osta A (2003) The rise of DNA methylation and the importance of chromatin on multidrug resistance in cancer. Exp Cell Res 290:177–194

    Article  PubMed  CAS  Google Scholar 

  11. Baker EK, Johnstone RW, Zalcberg JR, El-Osta A (2005) Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs. Oncogene 24:8061–8075

    Article  PubMed  CAS  Google Scholar 

  12. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  13. Liu T et al (2010) Establishment and characterization of multi-drug resistant, prostate carcinoma-initiating stem-like cells from human prostate cancer cell lines 22RV1. Mol Cell Biochem 340:265–273

    Article  PubMed  CAS  Google Scholar 

  14. Yu F et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123

    Article  PubMed  CAS  Google Scholar 

  15. Liu C et al (2012) Co-expression of Oct-4 and Nestin in human breast cancers. Mol Biol Rep 39:5875–5881

    Article  PubMed  CAS  Google Scholar 

  16. Sarkar FH, Li Y, Wang Z, Kong D, Ali S (2010) Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat 13:57–66

    Article  PubMed  CAS  Google Scholar 

  17. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751

    Article  PubMed  CAS  Google Scholar 

  18. Voulgari A, Pintzas A (2009) Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta 1796:75–90

    PubMed  CAS  Google Scholar 

  19. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012

    Article  PubMed  CAS  Google Scholar 

  20. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  21. Siu A, Lee C, Dang D, Ramos DM (2012) Stem cell markers as predictors of oral cancer invasion. Anticancer Res 32:1163–1166

    PubMed  CAS  Google Scholar 

  22. Jung JW et al (2011) Metformin represses self-renewal of the human breast carcinoma stem cells via inhibition of estrogen receptor-mediated OCT4 expression. PLoS One 6:e28068

    Article  PubMed  CAS  Google Scholar 

  23. Liu CG et al (2011) Clinical implications of stem cell gene Oct-4 expression in breast cancer. Ann Surg 253:1165–1171

    Article  PubMed  Google Scholar 

  24. Lengerke C et al (2011) Expression of the embryonic stem cell marker SOX2 in early-stage breast carcinoma. BMC Cancer 11:42

    Article  PubMed  Google Scholar 

  25. Leis O et al (2012) Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 31:1354–1365

    Article  PubMed  CAS  Google Scholar 

  26. Mani SA et al (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715

    Article  PubMed  CAS  Google Scholar 

  27. Visvader JE, Lindeman GJ (2012) Cancer stem cells: current status and evolving complexities. Cell Stem Cell 10:717–728

    Article  PubMed  CAS  Google Scholar 

  28. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA (2009) MicroRNAs—the micro steering wheel of tumour metastases. Nat Rev Cancer 9:293–302

    Article  PubMed  CAS  Google Scholar 

  29. Douville J, Beaulieu R, Balicki D (2009) ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev 18:17–25

    Article  PubMed  CAS  Google Scholar 

  30. Ginestier C et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  PubMed  CAS  Google Scholar 

  31. Heerma van Voss MR, van der Groep P, Bart J, van der Wall E, van Diest PJ (2011) Expression of the stem cell marker ALDH1 in BRCA1 related breast cancer. Cell Oncol (Dordr) 34:3–10

    Article  CAS  Google Scholar 

  32. Charafe-Jauffret E et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16:45–55

    Article  PubMed  CAS  Google Scholar 

  33. Grimshaw MJ et al (2008) Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 10:R52

    Article  PubMed  CAS  Google Scholar 

  34. Ponti D et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    Article  PubMed  CAS  Google Scholar 

  35. Shipitsin M et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273

    Article  PubMed  CAS  Google Scholar 

  36. Bomken S, Fiser K, Heidenreich O, Vormoor J (2010) Understanding the cancer stem cell. Br J Cancer 103:439–445

    Article  PubMed  CAS  Google Scholar 

  37. McDermott SP, Wicha MS (2010) Targeting breast cancer stem cells. Mol Oncol 4:404–419

    Article  PubMed  CAS  Google Scholar 

  38. Tanei T et al (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15:4234–4241

    Article  PubMed  CAS  Google Scholar 

  39. Zielske SP, Spalding AC, Wicha MS, Lawrence TS (2011) Ablation of breast cancer stem cells with radiation. Transl Oncol 4:227–233

    PubMed  Google Scholar 

  40. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  41. Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172

    Article  PubMed  CAS  Google Scholar 

  42. Peacock CD et al (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 104:4048–4053

    Article  PubMed  CAS  Google Scholar 

  43. Thayer SP et al (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425:851–856

    Article  PubMed  CAS  Google Scholar 

  44. Sajithlal GB et al (2010) Permanently blocked stem cells derived from breast cancer cell lines. Stem Cells 28:1008–1018

    Article  PubMed  Google Scholar 

  45. Stahl M, Ge C, Shi S, Pestell RG, Stanley P (2006) Notch1-induced transformation of RKE-1 cells requires up-regulation of cyclin D1. Cancer Res 66:7562–7570

    Article  PubMed  CAS  Google Scholar 

  46. Ling H, Sylvestre JR, Jolicoeur P (2010) Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene 29:4543–4554

    Article  PubMed  CAS  Google Scholar 

  47. Jeselsohn R et al (2010) Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis. Cancer Cell 17:65–76

    Article  PubMed  CAS  Google Scholar 

  48. Velasco-Velazquez MA et al (2011) Examining the role of cyclin D1 in breast cancer. Future Oncol 7:753–765

    Article  PubMed  CAS  Google Scholar 

  49. Velasco-Velazquez MA, Popov VM, Lisanti MP, Pestell RG (2011) The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol 179:2–11

    Article  PubMed  CAS  Google Scholar 

  50. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  51. Berezikov E et al (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120:21–24

    Article  PubMed  CAS  Google Scholar 

  52. Lee Y et al (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060

    Article  PubMed  CAS  Google Scholar 

  53. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432:231–235

    Article  PubMed  CAS  Google Scholar 

  54. Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  PubMed  CAS  Google Scholar 

  55. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    Article  PubMed  CAS  Google Scholar 

  56. Hutvagner G et al (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293:834–838

    Article  PubMed  CAS  Google Scholar 

  57. Jackson AL et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  PubMed  CAS  Google Scholar 

  58. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  59. Guarnieri DJ, DiLeone RJ (2008) MicroRNAs: a new class of gene regulators. Ann Med 40:197–208

    Article  PubMed  CAS  Google Scholar 

  60. Jeong HC et al (2011) Aberrant expression of let-7a miRNA in the blood of non-small cell lung cancer patients. Mol Med Report 4:383–387

    PubMed  CAS  Google Scholar 

  61. Mallick R, Patnaik SK, Yendamuri S (2010) MicroRNAs and lung cancer: biology and applications in diagnosis and prognosis. J Carcinog 9:8

    Article  PubMed  CAS  Google Scholar 

  62. Patnaik SK, Mallick R, Yendamuri S (2010) Detection of microRNAs in dried serum blots. Anal Biochem 407:147–149

    Article  PubMed  CAS  Google Scholar 

  63. Rothe F et al (2011) Global MicroRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One 6:e20980

    Article  PubMed  CAS  Google Scholar 

  64. Enerly E et al (2011) miRNA–mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS One 6:e16915

    Article  PubMed  CAS  Google Scholar 

  65. Adams BD, Guttilla IK, White BA (2008) Involvement of microRNAs in breast cancer. Semin Reprod Med 26:522–536

    Article  PubMed  CAS  Google Scholar 

  66. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  PubMed  CAS  Google Scholar 

  67. Le Quesne J, Caldas C (2010) Micro-RNAs and breast cancer. Mol Oncol 4:230–241

    Article  PubMed  CAS  Google Scholar 

  68. Iorio MV et al (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65:7065–7070

    Article  PubMed  CAS  Google Scholar 

  69. Lee CH et al (2009) MicroRNA profiling of BRCA1/2 mutation-carrying and non-mutation-carrying high-grade serous carcinomas of ovary. PloS One 4:e7314

    Article  PubMed  CAS  Google Scholar 

  70. Patnaik SK, Kannisto E, Knudsen S, Yendamuri S (2010) Evaluation of MicroRNA expression profiles that may predict recurrence of localized stage I non-small cell lung cancer after surgical resection. Cancer Res 70:36–45

    Article  PubMed  CAS  Google Scholar 

  71. Hwang-Verslues WW et al (2011) miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene 30:2463–2474

    Article  PubMed  CAS  Google Scholar 

  72. Yu F et al (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29:4194–4204

    Article  PubMed  CAS  Google Scholar 

  73. Shimono Y et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603

    Article  PubMed  CAS  Google Scholar 

  74. Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial–mesenchymal transition. Cell Cycle 7:3112–3118

    Article  PubMed  CAS  Google Scholar 

  75. Yu F et al (2012) MicroRNA 34c gene down-regulation via DNA methylation promotes self-renewal and epithelial–mesenchymal transition in breast tumor-initiating cells. J Biol Chem 287:465–473

    Article  PubMed  CAS  Google Scholar 

  76. Zhu Y et al (2011) Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res 17:7105–7115

    Article  PubMed  CAS  Google Scholar 

  77. D’Assoro AB et al (2002) Amplified centrosomes in breast cancer: a potential indicator of tumor aggressiveness. Breast Cancer Res Treat 75:25–34

    Article  PubMed  Google Scholar 

  78. Real PJ et al (2002) Resistance to chemotherapy via Stat3-dependent overexpression of Bcl-2 in metastatic breast cancer cells. Oncogene 21:7611–7618

    Article  PubMed  CAS  Google Scholar 

  79. Kong W et al (2010) MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem 285:17869–17879

    Article  PubMed  CAS  Google Scholar 

  80. Zhang W et al (2012) Chemoresistance to 5-fluorouracil induces epithelial–mesenchymal transition via up-regulation of Snail in MCF7 human breast cancer cells. Biochem Biophys Res Commun 417:679–685

    Article  PubMed  CAS  Google Scholar 

  81. Ajabnoor GM, Crook T, Coley HM (2012) Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis 3:e260

    Article  PubMed  CAS  Google Scholar 

  82. Yu KD, Huang AJ, Fan L, Li WF, Shao ZM (2012) Genetic variants in oxidative stress-related genes predict chemoresistance in primary breast cancer: a prospective observational study and validation. Cancer Res 72:408–419

    Article  PubMed  CAS  Google Scholar 

  83. Hatfield SD et al (2005) Stem cell division is regulated by the microRNA pathway. Nature 435:974–978

    Article  PubMed  CAS  Google Scholar 

  84. Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25:6188–6196

    Article  PubMed  CAS  Google Scholar 

  85. Ansieau S et al (2008) Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell 14:79–89

    Article  PubMed  CAS  Google Scholar 

  86. Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    Article  PubMed  CAS  Google Scholar 

  87. Spizzo R, Rushworth D, Guerrero M, Calin GA (2009) RNA inhibition, microRNAs, and new therapeutic agents for cancer treatment. Clin Lymphoma Myeloma 9(3):S313–S318

    Article  PubMed  CAS  Google Scholar 

  88. Zhang S, Chen L, Jung EJ, Calin GA (2010) Targeting microRNAs with small molecules: from dream to reality. Clin Pharmacol Ther 87:754–758

    Article  PubMed  CAS  Google Scholar 

  89. Singh S, Narang AS, Mahato RI (2011) Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm Res 28:2996–3015

    Article  PubMed  CAS  Google Scholar 

  90. Esau C et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    Article  PubMed  CAS  Google Scholar 

  91. Anand S et al (2010) MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med 16:909–914

    Article  PubMed  CAS  Google Scholar 

  92. Kaur H, Arora A, Wengel J, Maiti S (2006) Thermodynamic, counterion, and hydration effects for the incorporation of locked nucleic acid nucleotides into DNA duplexes. Biochemistry 45:7347–7355

    Article  PubMed  CAS  Google Scholar 

  93. Krutzfeldt J et al (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438:685–689

    Article  PubMed  CAS  Google Scholar 

  94. Collison A et al (2011) Altered expression of microRNA in the airway wall in chronic asthma: miR-126 as a potential therapeutic target. BMC Pulm Med 11:29

    Article  PubMed  CAS  Google Scholar 

  95. Fontana L et al (2008) Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM. PLoS One 3:e2236

    Article  PubMed  CAS  Google Scholar 

  96. Ma L et al (2010) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28:341–347

    Article  PubMed  CAS  Google Scholar 

  97. Gumireddy K et al (2008) Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl 47:7482–7484

    Article  PubMed  CAS  Google Scholar 

  98. Young DD, Connelly CM, Grohmann C, Deiters A (2010) Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc 132:7976–7981

    Article  PubMed  CAS  Google Scholar 

  99. Shan G et al (2008) A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol 26:933–940

    Article  PubMed  CAS  Google Scholar 

  100. Melo S et al (2011) Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci USA 108:4394–4399

    Article  PubMed  CAS  Google Scholar 

  101. Li Y, Kong D, Wang Z, Sarkar FH (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharmaceutical Res 27:1027–1041

    Article  CAS  Google Scholar 

  102. Li Y et al (2010) miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res 70:1486–1495

    Article  PubMed  CAS  Google Scholar 

  103. Sun M et al (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7:464–473

    Article  PubMed  CAS  Google Scholar 

  104. Zhang G et al (2012) Anti-cancer activities of tea epigallocatechin-3-gallate in breast cancer patients under radiotherapy. Curr Mol Med 12:163–176

    Article  PubMed  CAS  Google Scholar 

  105. Bao B et al (2012) Metformin inhibits cell proliferation, migration and invasion by attenuating CSC function mediated by deregulating miRNAs in pancreatic cancer cells. Cancer Prev Res 5:355–364

    Article  CAS  Google Scholar 

  106. Cufi S et al (2012) Metformin-induced preferential killing of breast cancer initiating CD44+CD24−/low cells is sufficient to overcome primary resistance to trastuzumab in HER2+ human breast cancer xenografts. Oncotarget 3:395–398

    PubMed  Google Scholar 

  107. Chlebowski RT et al (2012) Diabetes, metformin, and breast cancer in postmenopausal women. J Clin Oncol 30:2844–2852

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, S. (2013). Breast Cancer Stem Cells and miRNAs. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5647-6_20

Download citation

Publish with us

Policies and ethics