Advertisement

Hierarchical Radial Basis Functions Networks

  • Francesco Bellocchio
  • N. Alberto Borghese
  • Stefano Ferrari
  • Vincenzo Piuri
Chapter

Abstract

In this chapter a particular kind of neural model, namely the Hierarchical Radial Basis Function Network, is presented as an effective hierarchical network organization. In a similar way, in the next chapter another kind of multi-scale model, namely Support Vector Machines, will be presented.

Keywords

Receptive Field Input Space Reconstruction Error Close Neighborhood Error Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blender Foundation’s Peach Open Movie project. URL http://www.bigbuckbunny.org/index.php/about/
  2. 2.
    Blender.org. URL http://www.blender.org/
  3. 3.
    Checkmaster manual CMMs. URL http://www.helmel.com/Checkmaster.htm
  4. 4.
    Digital Michelangelo project. URL http://graphics.stanford.edu/projects/mich/
  5. 5.
  6. 6.
    FARO UK — measuring arms. URL http://www.faro.com/quantum
  7. 7.
    Leica HDS6200 — Advanced, affordable ultra-high speed, phase scanner. URL http://hds.leica-geosystems.com/en/LeicaHDS6200_64228.htm
  8. 8.
    Leica ScanStation C10 — The all-in-one laser scanner for any application. URL http://hds.leica-geosystems.com/en/Leica-ScanStation-C10_79411.htm
  9. 9.
    Maptek - I-Site 8800 3D laser scanner. URL http://www.maptek.com/products/i-site/i-site_8800.html
  10. 10.
    NVIDIA Tegra APX applications processors. URL http://www.nvidia.com/object/product_tegra_apx_us.html
  11. 11.
    QtMorph: Software for morphing images. URL http://borghese.di.unimi.it/Research/Software/index.html
  12. 12.
    REWIRE project — Rehabilitative Wayout In Responsive home Environments. URL http://www.rewire-project.eu/
  13. 13.
  14. 14.
    3D real-time reconstruction using hrbf on-line networks (2009). URL http://www.dti.unimi.it/ferrari/hrbf_online/hrbf_online.wmv
  15. 15.
    Aha, D., Albert, D.K.M.: Instance-based learning algorithms. Machine Learning pp. 37–66 (1991)Google Scholar
  16. 16.
    Al-Temeemy, A.A.: Three dimensional LADAR imaging system using AR-4000LV laser rangefinder. In: Proceedings of the Microwaves, Radar and Remote Sensing Symposium, pp. 263–266 (2011)Google Scholar
  17. 17.
    Alexander, O., Rogers, M., Lambeth, W., Chiang, J.Y., Ma, W.C., Wang, C.C., Debevec, P.: The digital emily project: Achieving a photorealistic digital actor. IEEE Computer Graphics and Applications 30(4), 20–31 (2010)Google Scholar
  18. 18.
    Alexandridis, A., Sarimveis, H., Bafas, G.: A new algorithm for online structure and parameter adaptation of RBF networks. Neural Networks 16(7), 1003–1017 (2003)Google Scholar
  19. 19.
    Algorri, M.E., Schmitt, F.: Surface reconstruction from unstructured 3D data. In: Computer Graphics Forum, vol. 15, pp. 47–60 (1996)Google Scholar
  20. 20.
    Aloimonos, Y.: Detection of surface orientation from texture I: the case of plane. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 584–593 (1986)Google Scholar
  21. 21.
    Alpern, B., Carter, L.: The hyperbox. In: Proceedings of the IEEE Conference on Visualization, pp. 133–139, 418 (1991)Google Scholar
  22. 22.
    Atkenson, G.C., Moore, A.W., Schaal, S.: Locally weighted learning. Artificial Intelligence Review 11, 11–73 (1997)Google Scholar
  23. 23.
    Baader, A., Hirzinger, G.: A self-organizing algorithm for multisensory surface reconstruction. In: Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems, vol. 1, pp. 81–89 (1994)Google Scholar
  24. 24.
    Bahlmann, C., Haasdonk, B., Burkhardt, H.: On-line handwriting recognition with support vector machines — a kernel approach. In: Proceedings of the 8th International Workshop on Frontiers in Handwriting Recognition, pp. 49–54 (2002)Google Scholar
  25. 25.
    Bajaj, C.L., Bernardini, F., Xu, G.: Automatic reconstruction of surfaces and scalar fields from 3D scans. In: Proceedings of the ACM SIGGRAPH Conference on Computer graphics and interactive techniques, pp. 109–118 (1995)Google Scholar
  26. 26.
    Barhak, J., Fischer, A.: Parameterization and reconstruction from 3D scattered points based on neural network and PDE techniques. IEEE Transactions on Visualization and Computer Graphics 7(1), 1–16 (2001)Google Scholar
  27. 27.
    Batlle, J., Mouaddib, E., Salvi, J.: Recent progress in coded structured light as a technique to solve the correspondence problem: a survey. Pattern Recognition 31(7), 963–982 (1998)Google Scholar
  28. 28.
    Belhumeur, P.N., Kriegman, D.J., Yuille, A.L.: The bas-relief ambiguity. International Journal of Computer Vision pp. 33–44 (1999)Google Scholar
  29. 29.
    Bellocchio, F., Borghese, N.A., Ferrari, S., Piuri, V.: Kernel regression in HRBF networks for surface reconstruction. In: Proceedings of the 2008 IEEE International Workshop on Haptic Audio and Visual Environments and Games, pp. 160–165 (2008)Google Scholar
  30. 30.
    Bellocchio, F., Ferrari, S.: Depth Map and 3D Imaging Applications: Algorithms and Technologies, chap. 3D Scanner, State of the Art, pp. 451–470. IGI Global (2011)Google Scholar
  31. 31.
    Bellocchio, F., Ferrari, S., Piuri, V., Borghese, N.A.: A hierarchical approach for multi-scale support vector regression. IEEE Transactions on Neural Networks and Learning Systems 23(9), 1448–1460 (2012)Google Scholar
  32. 32.
    Bellocchio, F., Ferrari, S., Piuri, V., Borghese, N.: Online training of hierarchical RBF. In: Proceedings of the 2007 IEEE-INNS International Joint Conference on Neural Networks, pp. 2159–2164 (2007)Google Scholar
  33. 33.
    Berg, A.B.: Locating global minima in optimisation problems by a random-cost approach. Nature 361, 708–710 (1993)Google Scholar
  34. 34.
    Bernardini, F., Bajaj, C.L., Chen, J., Schikore, D.R.: Automatic reconstruction of 3D CAD models from digital scans. International Journal of Computational Geometry and Applications 9(4-5), 327–370 (1999)Google Scholar
  35. 35.
    Besl, P., McKay, N.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8) (1992)Google Scholar
  36. 36.
    Billings, S.A., Zheng, G.L.: Radial basis function network configuration using genetic algorithms. Neural Networks 8(6), 877–890 (1995)Google Scholar
  37. 37.
    Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press (1995)Google Scholar
  38. 38.
    Bittar, E., Tsingos, N., Gascuel, M.P.: Automatic reconstruction of unstructured 3D data: Combining medial axis and implicit surfaces. Computer Graphics Forum 14(3), 457–468 (1995)Google Scholar
  39. 39.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(9), 1063– 1074 (2003)Google Scholar
  40. 40.
    Boissonat, J.D.: Geometric structures for three-dimensional shape representation. ACM Transactions on Graphics 3(4), 266–286 (1984)Google Scholar
  41. 41.
    Borghese, N., Cerveri, P.: Calibrating a video camera pair with a rigid bar. Pattern Recognition 33(1), 81–95 (2000)Google Scholar
  42. 42.
    Borghese, N., Ferrari, S., Piuri, V.: A methodology for surface reconstruction based on hierarchical models. In: Proceedings of the 2003 IEEE International Workshop on Haptic Virtual Environments and Their Applications, pp. 119–124 (2003)Google Scholar
  43. 43.
    Borghese, N., Ferrari, S., Piuri, V.: Real-time surface meshing through HRBF networks. In: Proceedings of 2003 IEEE-INNS-ENNS International Joint Conference of Neural Networks, vol. 2, pp. 1361–1366 (2003)Google Scholar
  44. 44.
    Borghese, N., Ferrigno, G.: An algorithm for 3-D automatic movement detection by means of standard TV cameras. IEEE Transactions on Biomedical Engineering 37(12), 1221–1225 (1990)Google Scholar
  45. 45.
    Borghese, N.A., Colombo, F.M., Alzati, A.: Computing camera focal length by zooming a single point. Pattern Recognition 39(8), 1522 – 1529 (2006)Google Scholar
  46. 46.
    Borghese, N.A., Ferrari, S.: Hierarchical RBF networks and local parameter estimate. Neurocomputing 19(1–3), 259–283 (1998)Google Scholar
  47. 47.
    Borghese, N.A., Ferrari, S.: A portable modular system for automatic acquisition of 3D objects. IEEE Transactions on Instrumentation and Measurement 49(5), 1128–1136 (2000)Google Scholar
  48. 48.
    Borghese, N.A., Ferrigno, G., Baroni, G., Ferrari, S., Savaré, R., Pedotti, A.: AUTOSCAN: a flexible and portable 3D scanner. IEEE Computer Graphics and Applications 18(3), 38–41 (1998)Google Scholar
  49. 49.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees. Wadsworth (1984)Google Scholar
  50. 50.
    Brooks, M.: Two results concerning ambiguity in shape from shading. In: Proceedings of the AAAI Third National Conference on Artificial Intelligence, pp. 36–39 (1983)Google Scholar
  51. 51.
    Broomhead, D.S., Lowe, D.: Multivariable functional interpolation and adaptive networks. Complex Systems 2, 321–355 (1988)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Broyden, C.G.: The convergence of a class of double-rank minimization algorithms. Journal of the Institute of Mathematics and Its Applications 6, 76–90 (1970)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Burges, B.S.C., Vapnik, V.: Extracting support data for a given task. In: Proceedings of the First International Conference on Knowledge Discovery and Data Mining. AAAI Press (1995)Google Scholar
  54. 54.
    Burges, B.S.C., Vapnik, V.: Incorporating invariances in support vector learning machines. In: Proceedings of the International Conference on Artificial Neural Networks, vol. 1112, pp. 47–52 (1996)Google Scholar
  55. 55.
    Cai, Z.: Weighted Nadaraya-Watson regression estimation. In: Statistics and Probability Letters, pp. 307–318 (2001)Google Scholar
  56. 56.
    Carpenter, A.: cuSVM: a CUDA implementation of support vector classification and regression (2009). URL http://patternsonascreen.net/cuSVM.html
  57. 57.
    Catalan, R.B., Perez, E.I., Perez, B.Z.: Evaluation of 3D scanners to develop virtual reality applications. In: Proceedings of the Fourth Congress of Electronics, Robotics and Automotive Mechanics, pp. 551–556 (2007)Google Scholar
  58. 58.
    Catanzaro, B., Sundaram, N., Keutzer, K.: Fast support vector machine training and classification on graphics processors. In: Proceedings of the 25th International Conference on Machine learning, pp. 104–111. ACM (2008)Google Scholar
  59. 59.
    Catapano, I., Crocco, L., Krellmann, Y., Triltzsch, G., Soldovieri, F.: A tomographic approach for helicopter-borne ground penetrating radar imaging. Geoscience and Remote Sensing Letters, IEEE 9(3), 378–382 (2012)Google Scholar
  60. 60.
    Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10(6), 350–355 (1978)Google Scholar
  61. 61.
    Cerveri, P., Ferrari, S., Borghese, N.A.: Calibration of TV cameras through RBF networks. In: Proceedings of SPIE Conference on Applications of Soft Computing, pp. 312–318 (1997)Google Scholar
  62. 62.
    Cetin, B., Barhen, J., Burdick, J.: Terminal repeller unconstrained subenergy tunnelling (trust) for fast global optimization. Journal of Optimization Theory and Application 77(1), 97–126 (1993)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Chan, Y.T.: Wavelet Basics. Kluwer Academic Publishers (1995)Google Scholar
  64. 64.
    Chen, S., Hong, X., Harris, C.J.: Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization. IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics 34(4), 1708–1717 (2004)Google Scholar
  65. 65.
    Clark, P., Niblett, T.: The CN2 induction algorithm. Machine Learning 3, 261–283 (1989)Google Scholar
  66. 66.
    Colombo, C., Bimbo, A.D., Del, A., Pernici, F.: Metric 3D reconstruction and texture acquisition of surfaces of revolution from a single uncalibrated view. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 99–114 (2005)Google Scholar
  67. 67.
    Colombo, C., Bimbo, A.D., Persini, F.: Metric 3D reconstruction and texture acquisition of surfaces of revolution from a single uncalibrated view. IEEE Transactions on Pattern Analysis and Machine Intelligence pp. 99–114 (2005)Google Scholar
  68. 68.
    Cordier, F., Seo, H., Magnenat-Thalmann, N.: Made-to-measure technologies for an online clothing store. IEEE Computer Graphics and Applications 23(1), 38–48 (2003)Google Scholar
  69. 69.
    Costin, M., Ignat, A., Baltag, O., Bejinariu, S., Stefanescu, C., Rotaru, F., Costandache, D.: 3D breast shape reconstruction for a non-invasive early cancer diagnosis system. In: Proceedings of the 2nd International Workshop on Soft Computing Applications, pp. 45–50 (2007)Google Scholar
  70. 70.
    Cover, T., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory pp. 21–27 (1967)Google Scholar
  71. 71.
    Craven, P., Wahba, G.: Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation. Numerische Mathematik 31(4), 377–403 (1978/79)Google Scholar
  72. 72.
    Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press (2000)Google Scholar
  73. 73.
    Csato, L., Opper, M.: Sparse representation for gaussian process models. Advances in neural information processing systems 13, 444–450 (2001)Google Scholar
  74. 74.
    Dai, L.: The 3D digital technology of fashion design. In: Proceedings of the International Symposium on Computer Science and Society, pp. 178–180 (2011)Google Scholar
  75. 75.
    Dasarathy, B.: Nearest Neighbor (NN) norms: NN pattern classification techniques. IEEE Press (1991)Google Scholar
  76. 76.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics 41, 909–996 (1988)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Daubechies, I.: Ten lectures on Wavelets. SIAM (1992)Google Scholar
  78. 78.
    Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from photographs: A hybrid geometry- and image-based approach. In: Proceedings of the ACM SIGGRAPH Conference on Computer graphics and interactive techniques, pp. 11–20 (1996)Google Scholar
  79. 79.
    Dick, C., Burgkart, R., Westermann, R.: Distance visualization for interactive 3D implant planning. IEEE Transactions on Visualization and Computer Graphics 17(12), 2173–2182 (2011)Google Scholar
  80. 80.
    Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika (1993)Google Scholar
  81. 81.
    Dorai, C., Wang, G., Jain, A.K., Mercer, C.: Registration and integration of multiple object views for 3D model construction. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(1), 83–89 (1998)Google Scholar
  82. 82.
    Dorn, W.S.: Duality in quadratic programming. Quarterly of Applied Mathematics 18(2), 155–162 (1960)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Dreyfus, G.: Neural networks: methodology and applications. Springer (2005)Google Scholar
  84. 84.
    Drucker, H., Burges, C., Smola, L.K.A., Vapnik, V.: Support vector regression machines pp. 151–161 (1997)Google Scholar
  85. 85.
    Edelsbrunner, H., Mucke, E.P.: Three-dimensional alpha shapes. ACM Transactions on Graphics 13(1), 43–72 (1994)zbMATHGoogle Scholar
  86. 86.
    English, C., Zhu, S., Smith, C., Ruel, S., Christie, I.: Tridar: A hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies. In: B. Battrick (ed.) Proceedings of the 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (2005)Google Scholar
  87. 87.
    Evans, F., Skiena, S., Varshney, A.: Optimizing triangle strips for fast rendering. In: Proceedings of the IEEE Visualization Conference, vol. 2, pp. 319–326 (1996)Google Scholar
  88. 88.
    Feldkamp, L.A., Davis, L.C., Kress, J.: Practical conebeam algorithm. Journal of the Optical Society of America A: Optics, Image Science, and Vision 1, 612–619 (1984)Google Scholar
  89. 89.
    Ferrari, S., Bellocchio, F., Borghese, N., Piuri, V.: Refining hierarchical radial basis function networks. In: Proceedings of the 2007 IEEE International Workshop on Haptic Audio and Visual Environments and Games, pp. 166–170 (2007)Google Scholar
  90. 90.
    Ferrari, S., Bellocchio, F., Piuri, V., Borghese, N.: Multi-scale support vector regression. In: Proceedings of the 2010 IEEE-INNS International Joint Conference on Neural Networks, pp. 2159–2164 (2010)Google Scholar
  91. 91.
    Ferrari, S., Bellocchio, F., Piuri, V., Borghese, N.A.: A hierarchical RBF online learning algorithm for real-time 3-D scanner. IEEE Transactions on Neural Networks 21(2), 275–285 (2010)Google Scholar
  92. 92.
    Ferrari, S., Borghese, N.A., Piuri, V.: Multi-resolution models for data processing: an experimental sensitivity analysis. In: Proceedings of the 2000 IEEE Instrumentation and Measurement Technology Conference, vol. 2, pp. 1056–1060 (2000)Google Scholar
  93. 93.
    Ferrari, S., Borghese, N.A., Piuri, V.: Multiscale models for data processing: an experimental sensitivity analysis. IEEE Transactions on Instrumentation and Measurement 50(4), 995–1002 (2001)Google Scholar
  94. 94.
    Ferrari, S., Ferrigno, G., Piuri, V., Borghese, N.A.: Reducing and filtering point clouds with enhanced vector quantization. IEEE Transactions Neural Networks 18(1), 161–177 (2007)Google Scholar
  95. 95.
    Ferrari, S., Frosio, I., Piuri, V., Borghese, N.: The accuracy of the HRBF networks. In: Proceedings of 2004 IEEE Instrumentation and Measurement Technology Conference, pp. 482–486 (2004)Google Scholar
  96. 96.
    Ferrari, S., Frosio, I., Piuri, V., Borghese, N.A.: Automatic multiscale meshing through HRBF networks. IEEE Transactions on Instrumentation and Measurement 54(4), 1463–1470 (2005)Google Scholar
  97. 97.
    Ferrari, S., Maggioni, M., Borghese, N.A.: Multi-scale approximation with hierarchical radial basis functions networks. IEEE Transactions on Neural Networks 15(1), 178–188 (2004)Google Scholar
  98. 98.
    Ford, C., Etter, D.: Wavelet basis reconstruction of nonuniformly sampled data. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 45(8), 1165–1168 (1998)Google Scholar
  99. 99.
    Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. ACM SIGGRAPH Computer Graphaphics Newsletter 22(4), 205–212 (1988)Google Scholar
  100. 100.
    Forsey, D.R., Wong, D.: Multiresolution surface reconstruction for hierarchical B-splines. Graphics Interface pp. 57–64 (1998)Google Scholar
  101. 101.
    Fougerolle, Y., Gribok, A., Foufou, S., Truchetet, F., Abidi, M.: Boolean operations with implicit and parametric representation of primitives using r-functions. IEEE Transactions on Visualization and Computer Graphics 11(5), 529–539 (2005)Google Scholar
  102. 102.
    Friedman, J.: Multivariate adaptive regression splines. Annals of Statistics 19(1), 1–141 (1991)MathSciNetzbMATHGoogle Scholar
  103. 103.
    Friedman, J.H., Stuetzle, W.: Projection pursuit regression. Journal of the American Statistical Association 76, 817–823 (1981)MathSciNetGoogle Scholar
  104. 104.
    Fritzke, B.: Growing cell structures — A self-organizing network for unsupervised and supervised learning. Neural Networks 7(9), 1441–1460 (1994)Google Scholar
  105. 105.
    Fritzke, B.: Growing grid — A self-organizing network with constant neighborhood range and adaptation strength. Neural Processing Letters 2(5), 9–13 (1995)Google Scholar
  106. 106.
    Frosio, I., Alzati, A., Bertolini, M., Turrini, C., Borghese, N.A.: Linear pose estimate from corresponding conics. Pattern Recognition 45(12), 4169–4181 (2012)Google Scholar
  107. 107.
    Frosio, I., Borghese, N.A.: Optimized algebraic local tomography. In: Proceedings of the GIRPR Conference (2010)Google Scholar
  108. 108.
    Frosio, I., Mainetti, R., Palazzo, S., Borghese, N.A.: Robust kinect for rehabilitation. In: Proceedings of the GIRPR Conference (2012)Google Scholar
  109. 109.
    Fung, G.M., Mangasarian, O.L., Smola, A.J.: Minimal kernel classiers. Journal of Machine Learning Research 3, 2303–321 (2002)Google Scholar
  110. 110.
    Gambino, M.C., Fontana, R., Gianfrate, G., Greco, M., Marras, L., Materazzi, M., Pampaloni, E., Pezzati, L.: A 3D scanning device for architectural relieves based on Time-Of-Flight technology. Springer (2005)Google Scholar
  111. 111.
    Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma. Neural Computation 4(1), 1–58 (1992)Google Scholar
  112. 112.
    Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Computation 7(2), 219–269 (1995)Google Scholar
  113. 113.
    Gorse, D., Sheperd, A., Taylor, J.: Avoiding local minima by a classical range expansion algorithm. In: Proceedings of the International Conference on Artificial Neural Networks (1994)Google Scholar
  114. 114.
    Hall, P.: On projection pursuit regression. Annals of Statistics 17(2), 573–588 (1989)MathSciNetzbMATHGoogle Scholar
  115. 115.
    Harman, P.: Home based 3D entertainment-an overview. In: Proceedings of the International Conference on Image Processing, pp. 1–4 vol.1 (2000)Google Scholar
  116. 116.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, second edn. Cambridge University Press (2004)Google Scholar
  117. 117.
    Hasenjäger, M., Ritter, H.: New learning paradigms in soft computing. In: Active learning in neural networks, pp. 137–169. Physica-Verlag GmbH (2002)Google Scholar
  118. 118.
    Heckbert, P.S., Garland, M.: Optimal triangulation and quadric-based surface simplification. Computational Geometry 14, 49–65 (1998)MathSciNetGoogle Scholar
  119. 119.
    Heikkinen, V., Kassamakov, I., Haggstrom, E., Lehto, S., Kiljunen, J., Reinikainen, T., Aaltonen, J.: Scanning white light interferometry, x2014; a new 3D forensics tool. In: Proceedings of the 2011 IEEE International Conference on Technologies for Homeland Security, pp. 332–337 (2011)Google Scholar
  120. 120.
    Hernandez, C., Vogiatzis, G., Cipolla, R.: Multiview photometric stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(3), 548–554 (2008)Google Scholar
  121. 121.
    Hertz, J., Krogh, A., Palmer, R.G.: An introduction to the theory of neural computation. Addison Wesley (1991)Google Scholar
  122. 122.
    Higo, T., Matsushita, Y., Joshi, N., Ikeuchi, K.: A hand-held photometric stereo camera for 3D modeling. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1234–1241 (2009)Google Scholar
  123. 123.
    Hoppe, H.: Surface reconstruction from unorganized points. PhD Thesis, Dept. of Computer Science and Engineering, University of Washington (1994)Google Scholar
  124. 124.
    Hoppe, H., DeRose, T., Duchamp, T., Mc-Donald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings of the ACM SIGGRAPH Conference on Computer graphics and interactive techniques), vol. 26, pp. 71–78 (1992)Google Scholar
  125. 125.
    Horn, B.: Obtaining shape from shading information. The Psychology of Computer Vision (1975)Google Scholar
  126. 126.
    Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Networks 4(2), 251–257 (1991)Google Scholar
  127. 127.
    Huang, P., Zhang, S.: Fast three-step phase shifting algorithm. Applied Optics 45(21), 5086–5091 (2006)Google Scholar
  128. 128.
    Hur, N., Lee, H., Lee, G.S., Lee, S.J., Gotchev, A., Park, S.I.: 3DTV broadcasting and distribution systems. IEEE Transactions on Broadcasting 57(2), 395–407 (2011)Google Scholar
  129. 129.
    Iddan, G.J., Yahav, G.: 3D imaging in the studio (and elsewhere). In: Proceedings of the SPIE Conference on Three-Dimensional Image Capture and Applications, pp. 48–55. San Jose, CA (2001)Google Scholar
  130. 130.
    Idesawa, M., Yatagai, T., Soma, T.: Scanning moiré method and automatic measurement of 3-D shapes. Applied Optics 16(8), 2152–2162 (1977)Google Scholar
  131. 131.
    Isler, V., Wilson, B., Bajcsy, R.: Building a 3D virtual museum of native american baskets. In: Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission, pp. 954–961 (2006)Google Scholar
  132. 132.
    Joachims, T.: Making large-scale SVM learning practical. In: B. Schölkopf, C. Burges, A. Smola (eds.) Advances in Kernel Methods — Support Vector Learning, chap. 11, pp. 169–184. MIT Press, Cambridge, MA (1999)Google Scholar
  133. 133.
    Katznelson, Y.: An introduction to harmonic analysis. Dover (1976)Google Scholar
  134. 134.
    Kaufman, L., Rousseeuw, P.J.: Finding groups in data — an introduction to cluster analysis. Wiley (1990)Google Scholar
  135. 135.
    Keerthi, S.S., Chapelle, O., Coste, D.D.: Building support vector machines with reduced classifier complexity. Journal of Machine Learning Research 7, 1493–1515 (2006)zbMATHGoogle Scholar
  136. 136.
    Kibler, D., Aha, D.W., Albert, M.K.: Instance-based prediction of real-valued attributes. Computational Intelligence pp. 51–57 (1989)Google Scholar
  137. 137.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimisation by simulated annealing. Science 220, 671–680 (1983)MathSciNetzbMATHGoogle Scholar
  138. 138.
    Klinke, S., Grassmann, J.: Projection pursuit regression and neural network. Tech. rep., Humboldt Universitaet Berlin (1998)Google Scholar
  139. 139.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, vol. 2, pp. 1137–1143 (1995)Google Scholar
  140. 140.
    Kohonen, T.: Self-Organizing Maps. Springer (1995)Google Scholar
  141. 141.
    Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the 2nd Berkeley Symposium, pp. 481–492. Berkeley: University of California Press (1951)Google Scholar
  142. 142.
    Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.I.: Learning the kernel matrix with semi-definite programming. Journal of Machine Learning Research 5, 27–72 (2004)zbMATHGoogle Scholar
  143. 143.
    Lee, A., Moreton, H., Hoppe, H.: Displaced subdivision surfaces. In: Proceedings of the ACM SIGGRAPH Conference on Computer graphics and interactive techniques, pp. 85–94 (2000)Google Scholar
  144. 144.
    Lee, A.W.F., Dobkin, D., Sweldens, W., Schröder, P.: Multiresolution mesh morphing. In: Proceedings of the 1999 ACM SIGGRAPH Conference on Computer graphics and interactive techniques, pp. 343–350 (1999)Google Scholar
  145. 145.
    Lee, A.W.F., Sweldens, W., Schroder, P., Cowsar, L., Dobkin, D.: MAPS: Multiresolution adaptive parameterization of surfaces. In: Proceedings of the ACM SIGGRAPH Conference on Computer graphics and interactive techniques, pp. 95–104 (1998)Google Scholar
  146. 146.
    Lee, J.-D., Lan, T.-Y., Liu, L.-C., Lee, S.-T., Wu, C.-T., Yang, B.: A remote virtual-surgery training and teaching system. In: Proceedings of the IEEE 3DTV Conference, pp. 1–4 (2007)Google Scholar
  147. 147.
    Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel B-splines. IEEE Transactions on Visualization and Computer Graphics 3(3), 228–244 (1997)Google Scholar
  148. 148.
    Levenberg, K.: A method for the solution of certain non-linear problems in least squares. The Quarterly of Applied Mathematics 2, 164–168 (1944)MathSciNetzbMATHGoogle Scholar
  149. 149.
    Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Transactions on Graphics 26(3), 701–709 (2007)Google Scholar
  150. 150.
    Levoy, M., Rusinkiewicz, S., Ginzton, M., Ginsberg, J., Pulli, K., Koller, D., Anderson, S., Shade, J., Curless, B., Pereira, L., David, J., Fulk, D.: The Digital Michelangelo project: 3D scanning of large statues. In: Proceedings of the 2000 ACM SIGGRAPH Conference on Computer graphics and interactive techniques (2000)Google Scholar
  151. 151.
    Levy, R., Dawson, P.: Reconstructing a Thule whalebone house using 3D imaging. IEEE Multimedia 13, 78–83 (2006)Google Scholar
  152. 152.
    Liang, X.: An effective method of pruning support vector machine classifiers. IEEE Transactions on Neural Networks 21(1), 26–38 (2010)Google Scholar
  153. 153.
    Lin, Y., Song, M., Quynh, D.T.P., He, Y., Chen, C.: Sparse coding for flexible, robust 3D facial-expression synthesis. IEEE Computer Graphics and Applications 32(2), 76–88 (2012)Google Scholar
  154. 154.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphaphics Newsletter 21(4), 163–169 (1987)Google Scholar
  155. 155.
    Luebke, D., Humphreys, G.: How GPUs work. IEEE Computer (2007)Google Scholar
  156. 156.
    Ma, J., Theiler, J., Perkins, S.: Accurate on-line support vector regression. Neural Computation 15, 2683–2703 (2003)zbMATHGoogle Scholar
  157. 157.
    Mallat, S.: A theory for multiscale signal decomposition: The wavelet representation. IEEE Transactions on Pattern and Machine Intelligence 11(7), 674–693 (1989)zbMATHGoogle Scholar
  158. 158.
    Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics 11, 431–441 (1963)MathSciNetzbMATHGoogle Scholar
  159. 159.
    Martinetz, T., Berkovich, S., Schulten, K.: Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 4(4), 558–568 (1993)Google Scholar
  160. 160.
    Martínez, J.I.M.: Best approximation of gaussian neural networks with nodes uniformly spaced. IEEE Transactions on Neural Networks 19(2), 284–298 (2008)Google Scholar
  161. 161.
    Mckinley, T.J., McWaters, M., Jain, V.K.: 3D reconstruction from a stereo pair without the knowledge of intrinsic or extrinsic parameters. In: Proceedings of the Second International Workshop on Digital and Computational Video, pp. 148–155 (2001)Google Scholar
  162. 162.
    de Medeiros Brito, A., Doria Neto, A., Dantas de Melo, J., Garcia Goncalves, L.: An adaptive learning approach for 3-D surface reconstruction from point clouds. IEEE Transactions on Neural Networks 19(6), 1130–1140 (2008)Google Scholar
  163. 163.
    Medioni, G., Choi, J., Kuo, C.H., Choudhury, A., Zhang, L., Fidaleo, D.: Non-cooperative persons identification at a distance with 3D face modeling. In: Proceedings of the First IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–6 (2007)Google Scholar
  164. 164.
    Mencl, R., Muller, H.: Interpolation and approximation of surfaces from three-dimensional scattered data points. In: Proceedings of the Eurographics 98 Conference, pp. 51–67 (1998)Google Scholar
  165. 165.
    Mencl, R., Müller, H.: Interpolation and approximation of surfaces from three-dimensional scattered data points. In: Proceedings of the Dagstuhl Conference on Scientific Visualization, pp. 223–232 (1999)Google Scholar
  166. 166.
    Meng, Q., Lee, M.: Error-driven active learning in growing radial basis function networks for early robot learning. Neurocomputing 71(7-9), 1449–1461 (2008)Google Scholar
  167. 167.
    Michalsky, R., Mozetic, I., Hong, J., Lavrac, N.: The multi-purpose incremental learning system, AQ15 and its testing application to three medical domains. In: Proceedings of the AAAI Sixth National Conference on Artificial Intelligence, pp. 1041–1045 (1986)Google Scholar
  168. 168.
    Miller, J.V., Breen, D.E., Lorensen, W.E., O’Bara, R.M., Wozny, M.J.: Geometrically deformed models: a method for extracting closed geometric models form volume data. ACM SIGGRAPH Computer Graphaphics Newsletter 25(4), 217–226 (1991)Google Scholar
  169. 169.
    Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Computation 1(2), 281–294 (1989)Google Scholar
  170. 170.
    Morcin, F., Garcia, N.: Hierarchical coding of 3D models with subdivision surfaces. In: Proceedings of the IEEE International Conference on Image Processing, vol. 2, pp. 911–914 (2000)Google Scholar
  171. 171.
    Müller, K.R., Smola, A., Rätsch, G., Schölkopf, B., Kohlmorgen, J., Vapnik, V.: Predicting time series with support vector machines. In: Proceedings of the International Conference on Artificial Neural Networks, vol. 1327, pp. 999–1004 (1997)Google Scholar
  172. 172.
    Narendra, K.S., Parthasarathy, K.: Gradient methods for the optimization of dynamical systems containing neural networks. IEEE Transactions on Neural Networks 2(2), 252–262 (1992)Google Scholar
  173. 173.
    Narendra, K.S., Thathachar, M.A.L.: Learning automata — an introduction. Prentice Hall (1989)Google Scholar
  174. 174.
    Newcombe, R.A., Davison, A.J., Izadi, S., Kohli, P., Hilliges, O., Shotton, J., Molyneaux, D., Hodges, S., Kim, D., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and tracking. In: Proceedings of the 2011 IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136 (2011)Google Scholar
  175. 175.
    Nguyen, D., Ho, T.: An efficient method for simplifying support vector machines. In: Proceedings of the 22nd international Conference on Machine learning, pp. 617–624 (2005)Google Scholar
  176. 176.
    Nikolov, S., Bull, D., Canagarajah, C., Halliwell, M., Wells, P.: Image fusion using a 3-D wavelet transform. In: Proceedings of the Seventh International Conference on Image Processing And Its Applications, pp. 235–239 (1999)Google Scholar
  177. 177.
    Olhoeft, G.: Applications and frustrations in using ground penetrating radar. Aerospace and Electronic Systems Magazine, IEEE 17(2), 12–20 (2002)Google Scholar
  178. 178.
    Orr, M.J.L.: Regularization in the selection of radial basis function centers. Neural Computation 7(3), 606–623 (1993)MathSciNetGoogle Scholar
  179. 179.
    Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU computing. Proceedings of the IEEE 96, 879–899 (2008)Google Scholar
  180. 180.
    Owens, J.D., Luebke, D., Harris, N.G.M., Kruger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. In: Proceedings of the Eurographics Conference, pp. 21–25 (2005)Google Scholar
  181. 181.
    Pan, Q., Reitmayr, G., Rosten, E., Drummond, T.: Rapid 3D modelling from live video. In: Proceedings of the 33rd IEEE MIPRO International Convention, pp. 252–257 (2010)Google Scholar
  182. 182.
    Park, K., Yun, I.D., Lee, S.U.: Automatic 3-D model synthesis from measured range data. IEEE Transactions on Circuits and Systems for Video Technology 10(2), 293–301 (2000)Google Scholar
  183. 183.
    Pastor, L., Rodriguez, A.: Surface approximation of 3D objects from irregularly sampled clouds of 3D points using spherical wavelets. In: Proceedings of the International Conference on Image Analysis and Processing, pp. 70–75 (1999)Google Scholar
  184. 184.
    Perez-Gutierrez, B., Martinez, D., Rojas, O.: Endoscopic endonasal haptic surgery simulator prototype: A rigid endoscope model. In: Proceedings of the 2010 IEEE Virtual Reality Conference, pp. 297–298 (2010)Google Scholar
  185. 185.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)Google Scholar
  186. 186.
    Piegel, L., Tiller, W.: The NURBS book. Springer (1997)Google Scholar
  187. 187.
    Pirovano, M., Mainetti, R., Baud-Bovy, G., Lanzi, P.L., Borghese, N.A.: Self-adaptive games for rehabilitation at home. In: Proceedings of IEEE Conference on Computational Intelligence and Games. Granada (Spain) (2012)Google Scholar
  188. 188.
    Platt, J.: A resource-allocating network for function interpolation. Neural Computation 3, 213–225 (1991)MathSciNetGoogle Scholar
  189. 189.
    Poggio, T.: A theory of how the brain might work. Tech. Rep. AIM-1253, Massachusetts Institute of Technology (1990)Google Scholar
  190. 190.
    Poggio, T., Girosi, F.: Network for approximation and learning. Proceedings of the IEEE 78, 1481–1497 (1990)Google Scholar
  191. 191.
    Potmesil, M.: Generating octree models of 3D objects from their silhouettes in a sequence of images. Computer Vision, Graphics, and Image Processing 40(1), 1–29 (1987)Google Scholar
  192. 192.
    Praun, E., Hoppe, H., Finkelstein, A.: Robust mesh watermarking. In: Proceedings of the ACM SIGGRAPH Conference on Computer graphics and interactive techniques, pp. 49–56 (1999)Google Scholar
  193. 193.
    Pulli, K.: Multiview registration for large data sets. In: Proceedings of the Second International Conference on 3-D Digital Imaging and Modeling, pp. 160–168 (1999)Google Scholar
  194. 194.
    Qi, Y., Cai, S., Yang, S.: 3D modeling, codec and protection in digital museum. In: Proceedings of the Second Workshop on Digital Media and its Application in Museum Heritages, pp. 231–236 (2007)Google Scholar
  195. 195.
    Qiu, S., Lane, T.: Multiple kernel learning for support vector regression. Tech. rep., Computer Science Department, The University of New Mexico, Albuquerque, NM, USA (2005)Google Scholar
  196. 196.
    Quinlan, R.J.: Learning with continuous classes. In: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, pp. 343–348. World Scientific, Singapore (1992)Google Scholar
  197. 197.
    Reddy, C.K., Park, J.H.: Multi-resolution boosting for classification and regression problems. In: Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, pp. 196–207. Springer-Verlag, Berlin, Heidelberg (2009)Google Scholar
  198. 198.
    Rejtö, L., Walter, G.: Remarks on projection pursuit regression and density estimation. Stochastic Analysis and Applications 10, 213–222 (1992)MathSciNetzbMATHGoogle Scholar
  199. 199.
    Rigotti, C., Borghese, N.A., Ferrari, S., Baroni, G., Ferrigno, G.: Portable and accurate 3D scanner for breast implants design and reconstructive plastic surgery. In: Proceedings of the SPIE International Symposium on Medical Imaging, pp. 1558–1567 (1998)Google Scholar
  200. 200.
    Rodriguez-Larena, J., Canal, F., Campo, F.: An optical 3D digitizer for industrial quality control applications. In: Proceedings of the 1999 IEEE International Conference on Emerging Technologies and Factory Automation, pp. 1155–1160 (1999)Google Scholar
  201. 201.
    Roosen, C., Hastie, T.: Automatic smoothing spline projection pursuit. Journal of Computational and Graphical Statistics 3, 235–248 (1994)Google Scholar
  202. 202.
    Rossignac, J.: Edgebreaker: Connectivity compression for triangle meshes. GVU Technical Report GIT-GVU-98-35 (1998)Google Scholar
  203. 203.
    Roth, G., Wibowoo, E.: An efficient volumetric method for building closed triangular meshes from 3-D image and point data. In: Graphics Interface, pp. 173–180 (1997)Google Scholar
  204. 204.
    Rozza, A., Lombardi, G., Rosa, M., Casiraghi, E., Campadelli, P.: IDEA: Intrinsic dimension estimation algorithm. In: Proceedings of the International Conference on Image Analysis and Processing, pp. 433–442 (2011)Google Scholar
  205. 205.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1, 318–362 (1986)Google Scholar
  206. 206.
    Rusinkiewicz, S., Hall-Holt, O., Levoy, M.: Real-time 3D model acquisition. In: Proceedings of the 2002 ACM SIGGRAPH Conference on Computer graphics and interactive techniques, pp. 438–446. ACM Press (2002)Google Scholar
  207. 207.
    Sanner, R.M., Slotine, J.E.: Gaussian networks for direct adaptive control. IEEE Transactions on Neural Networks 3(6), 837–863 (1992)Google Scholar
  208. 208.
    Sansoni, G., Docchio, F.: 3-D optical measurements in the field of cultural heritage: the case of the Vittoria Alata of Brescia. IEEE Transactions on Instrumentation and Measurement 54(1), 359–368 (2005)Google Scholar
  209. 209.
    Schnars, U., Jptner, W.P.O.: Digital recording and numerical reconstruction of holograms. Measurement Science and Technology 13(9), R85 (2002)Google Scholar
  210. 210.
    Schreiber, T., Brunnett, G.: Approximating 3D objects from measured points. In: Proceedings of 30th ISATA Conference (1997)Google Scholar
  211. 211.
    Schroder, P., Sweldens, W.: Spherical wavelets: Efficiently representing functions on the sphere. In: Proceedings of the ACM SIGGRAPH Conference on Computer graphics and interactive techniques, pp. 161–172 (1995)Google Scholar
  212. 212.
    Seyama, J., Nagayama, R.S.: The uncanny valley: Effect of realism on the impression of artificial human faces. Presence: Teleoperators and Virtual Environments 16(4), 337–351 (2007)Google Scholar
  213. 213.
    Shapiai, M.I., Ibrahim, Z., Khalid, M., Jau, L.W., Pavlovich, V.: A non-linear function approximation from small samples based on Nadaraya-Watson kernel regression. In: Proceedings of the Second International Conference on Computational Intelligence, Communication Systems and Networks, pp. 28–32 (2010)Google Scholar
  214. 214.
    Smola, A., Murata, N., Schölkopf, B., Müller, K.R.: Asymptotically optimal choice of ε-loss for support vector machines. In: Proceedings of the 8th International Conference on Artificial Neural Networks, pp. 105–110. Springer (1998)Google Scholar
  215. 215.
    Smola, A., Schölkopf, B.: A tutorial on support vector regression. Statistics and Computing 14, 199–222 (2004)MathSciNetGoogle Scholar
  216. 216.
    Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)Google Scholar
  217. 217.
    Stitson, M., Gammerman, A., Vapnik, V., Vovk, V., Watkins, C., Weston, J.: Support vector regression with ANOVA decomposition kernels. Advances in Kernel MethodsSupport Vector Learning pp. 285–292 (1999)Google Scholar
  218. 218.
    Stone, E., Skubic, M.: Evaluation of an inexpensive depth camera for passive in-home fall risk assessment. In: Proceedings of the 5th International Conference on Pervasive Computing Technologies for Healthcare, pp. 71–77 (2011)Google Scholar
  219. 219.
    Su, J., Dodd, T.J.: Online functional prediction for spatio-temporal systems using time-varying radial basis function networks. In: Proceedings of the 2nd International Asia Conference on Informatics in Control, Automation and Robotics, vol. 2, pp. 147–150 (2010)Google Scholar
  220. 220.
    Sweldens, W.: The lifting scheme: A new philosophy in biorthogonal wavelet constructions. In: Proceedings of the SPIE Conference on Wavelet applications in signal and image processing, pp. 68–79 (1995)Google Scholar
  221. 221.
    Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis 3(2), 186–200 (1996)MathSciNetzbMATHGoogle Scholar
  222. 222.
    Sweldens, W.: The lifting scheme: A construction of second generation wavelets. SIAM Journal on Mathematical Analysis 29(2), 511–546 (1997)MathSciNetGoogle Scholar
  223. 223.
    Syed, N.A., Liu, H., Sung, K.K.: Incremental learning with support vector machines. In: Proceedings of the Workshop on Support Vector Machines at the International Joint Conference on Artificial Intelligence (1999)Google Scholar
  224. 224.
    Tang, Y., Guo, W., Gao, J.: Efficient model selection for support vector machine with Gaussian kernel function. In: proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, pp. 40–45 (2009)Google Scholar
  225. 225.
    Taylan, P., Weber, G.W.: Multivariate adaptive regression spline and continuous optimization for modern applications in science, economy and techology. Tech. rep., Humboldt Universitaet Berlin (2004)Google Scholar
  226. 226.
    Teichmann, M., Capps, M.: Surface reconstruction with anisotropic density-scaled alpha shapes. In: Proceedings of the IEEE Visualization Conference, pp. 67–72 (1998)Google Scholar
  227. 227.
    Terzopoulos, D., Metaxas, D.: Dynamic 3D models with local and global deformations: deformable superquadrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(7), 703–714 (1991)Google Scholar
  228. 228.
    Tirelli, P., Momi, E.D., Borghese, N.A., Ferrigno, G.: An intelligent atlas-based planning system for keyhole neurosurgery. International Journal of Computer Assisted Radiology and Surgery 4(1), 85–91 (2009)Google Scholar
  229. 229.
    Tomasi, C., Kanade, T.: Detection and tracking of point features. Tech. rep., Carnegie Mellon University (1991)Google Scholar
  230. 230.
    Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics and Automation 3(4), 323–344 (1987)Google Scholar
  231. 231.
    Tsang, I., Kwok, J., Cheung, P.M.: Core vector machines: Fast SVM training on very large data sets. Journal of Machine Learning Research 6, 363–392 (2005)MathSciNetzbMATHGoogle Scholar
  232. 232.
    Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proceedings of the ACM SIGGRAPH Conference on Computer graphics and interactive techniques, pp. 311–318 (1994)Google Scholar
  233. 233.
    Ullrich, S., Kuhlen, T.: Haptic palpation for medical simulation in virtual environments. IEEE Transactions on Visualization and Computer Graphics 18(4), 617–625 (2012)Google Scholar
  234. 234.
    Uysal, I.L., Altay, H., Venir, G.: An overview of regression techniques for knowledge discovery. Knowledge Engineering Review 14, 319–340 (1999)Google Scholar
  235. 235.
    Vaillant, R., Faugeras, O.: Using extremal boundaries for 3D object modelling. IEEE Transactions on Pattern Analysis and Machine Intelligence 2(14), 157–173 (1992)Google Scholar
  236. 236.
    Vapnik, V.: Statistical learning theory. Wiley-Interscience (1989)Google Scholar
  237. 237.
    Vapnik, V., Chervonenkis, A.: Theory of pattern recognition. Nauka, Moscow (1974)zbMATHGoogle Scholar
  238. 238.
    Vapnik, V., Lerner, A.: Pattern recognition using generalized portrait method. Automation and Remote Control 24, 774–780 (1963)Google Scholar
  239. 239.
    Visintini, D., Spangher, A., Fico, B.: The VRML model of Victoria square in Gorizia (Italy) from laser scanning and photogrammetric 3D surveys. In: Proceedings of the Web3D 2007 International Symposium, pp. 165–169 (2007)Google Scholar
  240. 240.
    Wang, D., Wu, X.B., Lin, D.M.: Two heuristic strategies for searching optimal hyper parameters of C-SVM. In: Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, pp. 3690–3695 (2009)Google Scholar
  241. 241.
    Wang, L., Chu, C.h.: 3D building reconstruction from LiDAR data. In: Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, pp. 3054–3059 (2009)Google Scholar
  242. 242.
    Wang, Z., Chen, S., Sun, T.: MultiK-MHKS: A novel multiple kernel learning algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(2), 348–353 (2008)Google Scholar
  243. 243.
    Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning Journal 8(3) (1992)Google Scholar
  244. 244.
    Weiss, S., Indurkhya, N.: Optimized rule induction. IEEE Expert 8(6), 61–69 (1993)Google Scholar
  245. 245.
    Weiss, S., Indurkhya, N.: Rule-based machine learning methods for functional prediction. Journal of Artificial Intelligence Research 3, 383–403 (1995)zbMATHGoogle Scholar
  246. 246.
    Wohler, C.: 3D computer vision: efficient methods and applications. Springer (2009)Google Scholar
  247. 247.
    Wongwaen, N., Sinthanayothin, C.: Computerized algorithm for 3D teeth segmentation. In: Proceedings of the International Conference On Electronics and Information Engineering, pp. V1–277–V1–280 (2010)Google Scholar
  248. 248.
    Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Optical Engineering 19(1), 139–144 (1980)Google Scholar
  249. 249.
    Wust, C., Capson, D.W.: Surface profile measurement using color fringe projection. Machine Vision and Applications 4, 193–203 (1991)Google Scholar
  250. 250.
    Xu, H., Hu, Y., Chen, Y., Ma, Z., Wu, D.: A novel 3D surface modeling based on spatial neighbor points coupling in reverse engineering. In: Proceedings of the International Conference on Computer Design and Applications, pp. V5–59–V5–62 (2010)Google Scholar
  251. 251.
    Xue, B., Dor, O., Faraggi, E., Zhou, Y.: Real-value prediction of backbone torsion angles. Proteins 1(72), 427–33 (2008)Google Scholar
  252. 252.
    Yang, R., Allen, P.K.: Registering, integrating and building CAD models from range data. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 3115–3120 (1998)Google Scholar
  253. 253.
    Yuille, A.L.: A computational theory for the perception of coherent visual motion. Nature 333, 71–74 (1988)Google Scholar
  254. 254.
    Zha, H., Hoshide, T., Hasegawa, T.: A recursive fitting-and-splitting algorithm for 3-D object modeling using superquadrics. In: Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 658–662 (1998)Google Scholar
  255. 255.
    Zhang, F., Du, Z., Sun, L., Jia, Z.: A new novel virtual simulation system for robot-assisted orthopedic surgery. In: Proceedings of the IEEE International Conference on Robotics and Biomimetics, pp. 366–370 (2007)Google Scholar
  256. 256.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the 1999 IEEE International Conference on Computer Vision, pp. 666–673 vol.1 (1999)Google Scholar
  257. 257.
    Zhao, Y., Zhao, J., Zhang, L., Qi, L.: Development of a robotic 3D scanning system for reverse engineering of freeform part. In: Proceedings of the International Conference on Advanced Computer Theory and Engineering, pp. 246–250 (2008)Google Scholar
  258. 258.
    Zhenhua, Y., Xiao, F., Yinglu, L.: Online support vector regression for system identification. Advances in Natural Computation 3611, 627–630 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Francesco Bellocchio
    • 1
  • N. Alberto Borghese
    • 2
  • Stefano Ferrari
    • 1
  • Vincenzo Piuri
    • 1
  1. 1.Università degli Studi di MilanoCremaItaly
  2. 2.Università degli Studi di MilanoMilanoItaly

Personalised recommendations