Skip to main content

Application of Proteomics for Analysis of Protein Modifications in Postmortem Meat

  • Chapter
  • First Online:
Proteomics in Foods

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

Abstract

It is well established that many different protein modifications such as phosphorylation, oxidation, and degradation can affect meat quality and it is therefore important to implement and develop proteomics methods in meat science to understand the mechanism behind the influence of these protein modifications on the quality of meat and meat products. We can expect that high-throughput modification-specific proteomics will be employed to analyze systematically the qualitative and quantitative differences of these protein modifications in meat concerning the development, genetic background, processing, and storage that will contribute greatly to our understanding of the mechanisms underlying meat quality difference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  CAS  Google Scholar 

  • Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villen J, Li JX, Cohn MA, Cantley LC, Gygi SP (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101(33):12130–12135

    Article  CAS  Google Scholar 

  • Bendixen E (2005) The use of proteomics in meat science. Meat Sci 71(1):138–149

    Article  CAS  Google Scholar 

  • Bendixen E, Danielsen M, Hollung K, Gianazza E, Miller I (2011) Farm animal proteomics – a review. J Proteomics 74(3):282–293

    Article  CAS  Google Scholar 

  • Bernevic B, Petre BA, Galetskiy D, Werner C, Wicke M, Schellander K, Przybylski M (2011) Degradation and oxidation postmortem of myofibrillar proteins in porcine skeleton muscle revealed by high resolution mass spectrometric proteome analysis. Int J Mass Spectrom 305(2–3):217–227

    CAS  Google Scholar 

  • Estevez M (2011) Protein carbonyls in meat systems: a review. Meat Sci 89(3):259–279

    Article  CAS  Google Scholar 

  • Feng J, Xie HW, Meany DL, Thompson LV, Arriaga EA, Griffin TJ (2008) Quantitative proteomic profiling of muscle type-dependent and age-dependent protein carbonylation in rat skeletal muscle mitochondria. J Gerontol Ser A Biol 63(11):1137–1152

    Article  Google Scholar 

  • Ferguson DM, Warner RD (2008) Have we underestimated the impact of pre-slaughter stress on meat quality in ruminants? Meat Sci 80(1):12–19

    Article  CAS  Google Scholar 

  • Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20(3):301–305

    Article  CAS  Google Scholar 

  • Gabius HJ, Andre S, Kaltner H, Siebert HC (2002) The sugar code: functional lectinomics. BBA Gen Subjects 1572(2–3):165–177

    Article  CAS  Google Scholar 

  • Gannon J, Staunton L, O’Connell K, Doran P, Ohlendieck K (2008) Phosphoproteomic analysis of aged skeletal muscle. Int J Mol Med 22(1):33–42

    CAS  Google Scholar 

  • Graves JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82(2–3):111–121

    Article  CAS  Google Scholar 

  • Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3(3):556–566

    Article  Google Scholar 

  • Hojlund K, Bowen BP, Hwang H, Flynn CR, Madireddy L, Geetha T, Langlais P, Meyer C, Mandarino LJ, Yi ZP (2009) In vivo phosphoproteome of human skeletal muscle revealed by phosphopeptide enrichment and HPLC-ESI-MS/MS. J Proteome Res 8(11):4954–4965

    Article  CAS  Google Scholar 

  • Hollung K, Veiseth E, Jia XH, Faergestad EM, Hildrum KI (2007) Application of proteomics to understand the molecular mechanisms behind meat quality. Meat Sci 77(1):97–104

    Article  CAS  Google Scholar 

  • Hou JJ, Cui ZY, Xie ZS, Xue P, Wu P, Chen XL, Li J, Cai TX, Yang FQ (2010) Phosphoproteome analysis of rat L6 myotubes using reversed-phase C18 prefractionation and titanium dioxide enrichment. J Proteome Res 9(2):777–788

    Article  CAS  Google Scholar 

  • Huang HG, Larsen MR, Karlsson AH, Pomponio L, Costa LN, Lametsch R (2011) Gel-based phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences. Proteomics 11(20):4063–4076

    Article  CAS  Google Scholar 

  • Huang HG, Larsen MR, Lametsch R (2012) Changes in phosphorylation of myofibrillar proteins during postmortem development of porcine muscle. Food Chem. doi: http://dx.doi.org/10.1016/j.foodchem.2012.03.132

  • Hunter T (2000) Signaling – 2000 and beyond. Cell 100(1):113–127

    Article  CAS  Google Scholar 

  • Hwang IH, Park BY, Kim JH, Cho SH, Lee JM (2005) Assessment of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Sci 69(1):79–91

    Article  CAS  Google Scholar 

  • Jensen ON (2004) Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 8(1):33–41

    Article  Google Scholar 

  • Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7(6):391–403

    Article  CAS  Google Scholar 

  • Jia XH, Hollung K, Therkildsen M, Hildrum KI, Bendixen E (2006) Proteome analysis of early post-mortem changes in two bovine muscle types: M-longissimus dorsi and M-semitendinosis. Proteomics 6(3):936–944

    Article  CAS  Google Scholar 

  • Johnson LN (1992) Glycogen-phosphorylase – control by phosphorylation and allosteric effectors. FASEB J 6(6):2274–2282

    CAS  Google Scholar 

  • Kanski J, Hong SJ, Schoneich C (2005) Proteomic analysis of protein nitration in aging skeletal muscle and identification of nitrotyrosine-containing sequences in vivo by nanoelectrospray ionization tandem mass spectrometry. J Biol Chem 280(25):24261–24266

    Article  CAS  Google Scholar 

  • Kerwin BA, Remmele RL (2007) Protect from light: photodegradation and protein biologics. J Pharm Sci 96(6):1468–1479

    Article  CAS  Google Scholar 

  • Kim SC, Sprung R, Chen Y, Xu YD, Ball H, Pei JM, Cheng TL, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao YM (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23(4):607–618

    Article  CAS  Google Scholar 

  • Kinoshita Y, Sato T, Naitou H, Ohashi N, Kumazawa S (2007) Proteomic studies on protein oxidation in bonito (Katsuwonus pelamis) muscle. Food Sci Technol Res 13(2):133–138

    Article  CAS  Google Scholar 

  • Koohmaraie M (1996) Biochemical factors regulating the toughening and tenderization processes of meat. Meat Sci 43:S193–S201

    Article  Google Scholar 

  • Koohmaraie M, Geesink GH (2006) Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci 74(1):34–43

    Article  CAS  Google Scholar 

  • Lametsch R, Roepstorff P, Bendixen E (2002) Identification of protein degradation during post-mortem storage of pig meat. J Agric Food Chem 50(20):5508–5512

    Article  CAS  Google Scholar 

  • Lametsch R, Karlsson A, Rosenvold K, Andersen HJ, Roepstorff P, Bendixen E (2003) Postmortem proteome changes of porcine muscle related to tenderness. J Agric Food Chem 51(24):6992–6997

    Article  CAS  Google Scholar 

  • Lametsch R, Larsen MR, Essen-Gustavsson B, Jensen-Waern M, Lundstrom K, Lindahl G (2011) Postmortem changes in pork muscle protein phosphorylation in relation to the RN genotype. J Agric Food Chem 59(21):11608–11615

    Article  CAS  Google Scholar 

  • Larsen MR, Larsen PM, Fey SJ, Roepstorff P (2001) Characterization of differently processed forms of enolase 2 from Saccharomyces cerevisiae by two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis 22(3):566–575

    Article  CAS  Google Scholar 

  • Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJD (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4(7):873–886

    Article  CAS  Google Scholar 

  • Larsen MR, Trelle MB, Thingholm TE, Jensen ON (2006) Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques 40(6):790–798

    Article  CAS  Google Scholar 

  • Larsen MR, Jensen SS, Jakobsen LA, Heegaard NHH (2007) Exploring the sialiome using ­titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics 6(10):1778–1787

    Article  CAS  Google Scholar 

  • Li CB, Li J, Zhou GH, Lametsch R, Ertbjerg P, Bruggemann DA, Huang HG, Karlsson AH, Hviid M, Lundstrom K (2011) Electrical stimulation affects metabolic enzyme phosphorylation, protease activation and meat tenderization in beef. J Anim Sci 90(5):1638–1649

    Google Scholar 

  • Lund MN, Lametsch R, Hviid MS, Jensen ON, Skibsted LH (2007) High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage. Meat Sci 77(3):295–303

    Article  CAS  Google Scholar 

  • Lund MN, Heinonen M, Baron CP, Estevez M (2011) Protein oxidation in muscle foods: a review. Mol Nutr Food Res 55(1):83–95

    Article  CAS  Google Scholar 

  • Martin-Rendon E, Blake DJ (2003) Protein glycosylation in disease: new insights into the congenital muscular dystrophies. Trends Pharmacol Sci 24(4):178–183

    Article  CAS  Google Scholar 

  • McLean L, Young IS, Doherty MK, Robertson DHL, Cossins AR, Gracey AY, Beynon RJ, Whitfield PD (2007) Global cooling: cold acclimation and the expression of soluble proteins in carp skeletal muscle. Proteomics 7(15):2667–2681

    Article  CAS  Google Scholar 

  • Morzel M, Gatellier P, Sayd T, Renerre M, Laville E (2006) Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins. Meat Sci 73(3):536–543

    Article  CAS  Google Scholar 

  • Morzel M, Terlouw C, Chambon C, Micol D, Picard B (2008) Muscle proteome and meat eating qualities of Longissimus thoracis of “Blonde d’Aquitaine” young bulls: a central role of HSP27 isoforms. Meat Sci 78(3):297–304

    Article  CAS  Google Scholar 

  • Muroya S, Ohnishi-Kameyama M, Oe M, Nakajima I, Shibata M, Chikuni K (2007) Double phosphorylation of the myosin regulatory light chain during rigor mortis of bovine longissimus muscle. J Agric Food Chem 55(10):3998–4004

    Article  CAS  Google Scholar 

  • Nakamura A, Goto S (1996) Analysis of protein carbonyls with 2,4-dinitrophenyl hydrazine and its antibodies by immunoblot in two-dimensional gel electrophoresis. J Biochem 119(4):768–774

    Article  CAS  Google Scholar 

  • Nuhse TS, Stensballe A, Jensen ON, Peck SC (2003) Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2(11):1234–1243

    Article  Google Scholar 

  • Oda Y, Nagasu T, Chait BT (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol 19(4):379–382

    Article  CAS  Google Scholar 

  • Oliver CN, Ahn BW, Moerman EJ, Goldstein S, Stadtman ER (1987) Age-related-changes in oxidized proteins. J Biol Chem 262(12):5488–5491

    CAS  Google Scholar 

  • Patton WF (2002) Detection technologies in proteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci 771(1–2):3–31

    CAS  Google Scholar 

  • Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71(14):2883–2892

    Article  CAS  Google Scholar 

  • Promeyrat A, Gatellier P, Lebret B, Kajak-Siemaszko K, Aubry L, Sante-Lhoutellier V (2010) Evaluation of protein aggregation in cooked meat. Food Chem 121(2):412–417

    Article  CAS  Google Scholar 

  • Promeyrat A, Sayd T, Laville E, Chambon C, Lebret B, Gatellier P (2011) Early post-mortem sarcoplasmic proteome of porcine muscle related to protein oxidation. Food Chem 127(3):1097–1104

    Article  CAS  Google Scholar 

  • Rowe LJ, Maddock KR, Lonergan SM, Huff-Lonergan E (2004) Influence of early postmortem protein oxidation on beef quality. J Anim Sci 82(3):785–793

    CAS  Google Scholar 

  • Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94–101

    Article  CAS  Google Scholar 

  • Scheffler TL, Gerrard DE (2007) Mechanisms controlling pork quality development: the biochemistry controlling postmortem energy metabolism. Meat Sci 77(1):7–16

    Article  CAS  Google Scholar 

  • Schwagele F, Haschke C, Honikel KO, Krauss G (1996) Enzymological investigations on the causes for the PSE-syndrome, 1. Comparative studies on pyruvate kinase from PSE- and normal pig muscles. Meat Sci 44(1–2):27–40

    Article  CAS  Google Scholar 

  • Shen QW, Du M (2005) Role of AMP-activated protein kinase in the glycolysis of postmortem muscle. J Sci Food Agric 85(14):2401–2406

    Article  CAS  Google Scholar 

  • Silvestre D, Ferrer E, Gaya J, Jareno E, Miranda M, Muriach M, Romero FJ (2006) Available lysine content in human milk: stability during manipulation prior to ingestion. Biofactors 26(1):71–79

    Article  CAS  Google Scholar 

  • Sprang SR, Acharya KR, Goldsmith EJ, Stuart DI, Varvill K, Fletterick RJ, Madsen NB, Johnson LN (1988) Structural-changes in glycogen-phosphorylase induced by phosphorylation. Nature 336(6196):215–221

    Article  CAS  Google Scholar 

  • Stagsted J, Bendixen E, Andersen HJ (2004) Identification of specific oxidatively modified proteins in chicken muscles using a combined immunologic and proteomic approach. J Agric Food Chem 52(12):3967–3974

    Article  CAS  Google Scholar 

  • Steinberg TH, Agnew BJ, Gee KR, Leung WY, Goodman T, Schulenberg B, Hendrickson J, Beechem JM, Haugland RP, Patton WF (2003) Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3(7):1128–1144

    Article  CAS  Google Scholar 

  • Suman SP, Faustman C, Stamer SL, Liebler DC (2007) Proteomics of lipid oxidation-induced oxidation of porcine and bovine oxymyoglobins. Proteomics 7(4):628–640

    Article  CAS  Google Scholar 

  • Thingholm TE, Jorgensen TJD, Jensen ON, Larsen MR (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1(4):1929–1935

    Article  CAS  Google Scholar 

  • Walsh CT, Garneau-Tsodikova S, Gatto GJ (2005) Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Edit 44(45):7342–7372

    Article  CAS  Google Scholar 

  • Wells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW (2002) Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics 1(10):791–804

    Article  CAS  Google Scholar 

  • Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4(10):798–806

    Article  CAS  Google Scholar 

  • Wu CC, MacCoss MJ, Howell KE, Yates JR (2003) A method for the comprehensive proteomic analysis of membrane proteins. Nat Biotechnol 21(5):532–538

    Article  CAS  Google Scholar 

  • Yang ZP, Hancock WS (2004) Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J Chromatogr A 1053(1–2):79–88

    CAS  Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Lametsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huang, H., Lametsch, R. (2013). Application of Proteomics for Analysis of Protein Modifications in Postmortem Meat. In: Toldrá, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_7

Download citation

Publish with us

Policies and ethics