Skip to main content

Proteomics of Filamentous Fungi

  • Chapter
  • First Online:
Proteomics in Foods

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

  • 2979 Accesses

Abstract

Filamentous fungi, such as Aspergillus niger and Aspergillus oryzae traditionally have had an important role in providing enzymes and enzyme cocktails that are used in food industry. In recent years the genome sequences of many filamentous fungi have become available. This combined with technological developments in proteomics methodology and the development of bioinformatics tools has also had great impact on the proteomic analysis of secreted enzymes from fungi. Traditional screening methods for applications can now be replaced by a proteomic analysis of the active enzyme mixtures, after which the most interesting proteins can be selectively expressed and studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamidi C, Wang Y, Gruen D et al (2011) De novo assembly and validation of planaria transcriptome by massive parallel sequencing and shotgun proteomics. Genome Res 21:1193–1200

    Article  CAS  Google Scholar 

  • Adav SS, Li AA, Manavalan A, Punt P, Sze SK (2010) Quantitative iTRAQ secretome analysis of Aspergillus niger reveals novel hydrolytic enzymes. J Proteome Res 9:3932–3940

    Article  CAS  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  Google Scholar 

  • Andersen MR, Salazar MP, Schaap PJ et al (2011) Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res 21:885–897

    Article  CAS  Google Scholar 

  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197

    Article  CAS  Google Scholar 

  • Ansong C, Purvine SO, Adkins JN, Lipton MS, Smith RD (2008) Proteogenomics: needs and roles to be filled by proteomics in genome annotation. Brief Funct Genomic Proteomic 7:50–62

    Article  CAS  Google Scholar 

  • Armengaud J (2009) A perfect genome annotation is within reach with the proteomics and genomics alliance. Curr Opin Microbiol 12:292–300

    Article  CAS  Google Scholar 

  • Braaksma M, Martens-Uzunova ES, Punt PJ, Schaap PJ (2010) An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics 11:584

    Article  Google Scholar 

  • Bussink HJ, Buxton FP, Fraaye BA, de Graaff LH, Visser J (1992) The polygalacturonases of Aspergillus niger are encoded by a family of diverged genes. Eur J Biochem/FEBS 208:83–90

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  • Chait BT (2006) Mass spectrometry: bottom-up or top-down? Science 314:65–66

    Article  CAS  Google Scholar 

  • Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467

    Article  CAS  Google Scholar 

  • Dagan T, Martin W (2007) Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci USA 104:870–875

    Article  CAS  Google Scholar 

  • de Oliveira JM, van Passel MW, Schaap PJ, de Graaff LH (2011) Proteomic analysis of the secretory response of Aspergillus niger to D-maltose and D-xylose. PLoS One 6:e20865

    Article  Google Scholar 

  • de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev: MMBR 65:497–522, table of contents

    Article  Google Scholar 

  • de Vries RP, Michelsen B, Poulsen CH et al (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63:4638–4644

    Google Scholar 

  • de Vries RP, Visser J, de Graaff LH (1999) CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 150:281–285

    Article  Google Scholar 

  • Desgagne-Penix I, Khan M, Schriemer D, Cram D, Nowak J, Facchini P (2010) Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures. BMC Plant Biol 10:252

    Article  Google Scholar 

  • Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  Google Scholar 

  • Eng JK, McCormack AL, Yates Iii JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989

    Article  CAS  Google Scholar 

  • Fedorova ND, Khaldi N, Joardar VS et al (2008) Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 4:e1000046

    Article  Google Scholar 

  • Ferreira de Oliveira JM, van Passel MW, Schaap PJ, de Graaff LH (2010) Shotgun proteomics of Aspergillus niger microsomes upon D-xylose induction. Appl Environ Microbiol 76:4421–4429

    Article  CAS  Google Scholar 

  • Flipphi MJ, Visser J, van der Veen P, de Graaff LH (1993a) Cloning of the Aspergillus niger gene encoding alpha-L-arabinofuranosidase A. Appl Microbiol Biotechnol 39:335–340

    Article  CAS  Google Scholar 

  • Flipphi MJ, van Heuvel M, van der Veen P, Visser J, de Graaff LH (1993b) Cloning and characterization of the abfB gene coding for the major alpha-L-arabinofuranosidase (ABF B) of Aspergillus niger. Curr Genet 24:525–532

    Article  CAS  Google Scholar 

  • Flipphi MJ, Panneman H, van der Veen P, Visser J, de Graaff LH (1993c) Molecular cloning, expression and structure of the endo-1,5-alpha-L-arabinase gene of Aspergillus niger. Appl Microbiol Biotechnol 40:318–326

    Article  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C et al (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  CAS  Google Scholar 

  • Geer LY, Markey SP, Kowalak JA et al (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964

    Article  CAS  Google Scholar 

  • Gielkens MM, Dekkers E, Visser J, de Graaff LH (1999) Two cellobiohydrolase-encoding genes from Aspergillus niger require D-xylose and the xylanolytic transcriptional activator XlnR for their expression. Appl Environ Microbiol 65:4340–4345

    CAS  Google Scholar 

  • Gysler C, Harmsen JA, Kester HC, Visser J, Heim J (1990) Isolation and structure of the pectin lyase D-encoding gene from Aspergillus niger. Gene 89:101–108

    Article  CAS  Google Scholar 

  • Harmsen JA, Kusters-van Someren MA, Visser J (1990) Cloning and expression of a second Aspergillus niger pectin lyase gene (pelA): indications of a pectin lyase gene family in A. niger. Curr Genet 18:161–166

    Article  CAS  Google Scholar 

  • Hasper AA, Visser J, de Graaff LH (2000) The Aspergillus niger transcriptional activator XlnR, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylose reductase gene expression. Mol Microbiol 36:193–200

    Article  CAS  Google Scholar 

  • Hasper AA, Dekkers E, van Mil M, van de Vondervoort PJ, de Graaff LH (2002) EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl Environ Microbiol 68:1556–1560

    Article  CAS  Google Scholar 

  • Khaldi N, Wolfe KH (2008) Elusive origins of the extra genes in Aspergillus oryzae. PLoS One 3:e3036

    Article  Google Scholar 

  • Koutsioulis D, Landry D, Guthrie EP (2008) Novel endo-Å’  ±  −N-acetylgalactosaminidases with broader substrate specificity. Glycobiology 18:799–805

    Article  CAS  Google Scholar 

  • Kusters-van Someren MA, Harmsen JA, Kester HC, Visser J (1991) Structure of the Aspergillus niger pelA gene and its expression in Aspergillus niger and Aspergillus nidulans. Curr Genet 20:293–299

    Article  CAS  Google Scholar 

  • Lu X, Sun J, Nimtz M, Wissing J, Zeng AP, Rinas U (2010) The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microb Cell Fact 9:23

    Article  Google Scholar 

  • Lundberg E, Fagerberg L, Klevebring D et al (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol 6:450

    Article  Google Scholar 

  • Lussier M, Sdicu A-M, Bussey H (1999) The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) – General Subjects 1426:323–334

    Article  CAS  Google Scholar 

  • Ma Z-Q, Dasari S, Chambers MC et al (2009) IDPicker 2.0: improved protein assembly with high discrimination peptide identification filtering. J Proteome Res 8:3872–3881

    Article  CAS  Google Scholar 

  • Mach-Aigner AR, Omony J, Jovanovic B, van Boxtel AJ, de Graaff LH (2012) d-Xylose concentration-dependent hydrolase expression profiles and the function of CreA and XlnR in Aspergillus niger. Appl Environ Microbiol 78:3145–3155

    Article  CAS  Google Scholar 

  • Machida M, Asai K, Sano M et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Article  Google Scholar 

  • Manzanares P, de Graaff LH, Visser J (1997) Purification and characterization of an alpha-L-rhamnosidase from Aspergillus niger. FEMS Microbiol Lett 157:279–283

    Article  CAS  Google Scholar 

  • Martens-Uzunova ES, Zandleven JS, Benen JA et al (2006) A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation. Biochem J 400:43–52

    Article  CAS  Google Scholar 

  • Nesvizhskii AI (2010) A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics 73:2092–2123

    Article  CAS  Google Scholar 

  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  CAS  Google Scholar 

  • Ochman H, Daubin V, Lerat E (2005) A bunch of fun-guys: the whole-genome view of yeast evolution. Trends Genet 21:1–3

    Article  CAS  Google Scholar 

  • Oda K, Kakizono D, Yamada O, Iefuji H, Akita O, Iwashita K (2006) Proteomic analysis of ­extracellular proteins from Aspergillus oryzae grown under submerged and solid-state culture conditions. Appl Environ Microbiol 72:3448–3457

    Article  CAS  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB et al (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Article  Google Scholar 

  • Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  Google Scholar 

  • Stricker AR, Mach RL, de Graaff LH (2008) Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 78:211–220

    Article  CAS  Google Scholar 

  • Tabb DL, Fernando CG, Chambers MC (2007) MyriMatch: Äâ highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res 6:654–661

    Article  CAS  Google Scholar 

  • Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE (2009) Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genet Biol: FG and B 46(Suppl 1):S153–S160

    Article  CAS  Google Scholar 

  • van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91:1477–1492

    Article  CAS  Google Scholar 

  • van Passel MW, Marri PR, Ochman H (2008) The emergence and fate of horizontally acquired genes in Escherichia coli. PLoS Comput Biol 4:e1000059

    Article  Google Scholar 

  • van Peij NN, Visser J, de Graaff LH (1998a) Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 27:131–142

    Article  Google Scholar 

  • van Peij NN, Gielkens MM, de Vries RP, Visser J, de Graaff LH (1998b) The transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger. Appl Environ Microbiol 64:3615–3619

    Google Scholar 

  • Wang H, Xu Z, Gao L, Hao B (2009) A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol Biol 9:195

    Article  Google Scholar 

  • Wolters DA, Washburn MP, Yates JR (2001) An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73:5683–5690

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo H. de Graaff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Passel, M.W.J., Schaap, P.J., de Graaff, L.H. (2013). Proteomics of Filamentous Fungi. In: Toldrá, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_28

Download citation

Publish with us

Policies and ethics