Skip to main content

Relevance of Peptides Bioactivity in Foods

  • Chapter
  • First Online:
Proteomics in Foods

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

Abstract

Food protein-derived bioactive peptides are a group of functional food components. Enzymatic hydrolysis of food proteins generates various peptides with physiological functions, such as antihypertensive, opioid, immunostimulating, antimicrobial, antithrombotic, hypocholesterolemic, and antioxidative activities. This chapter includes an overview of bioactive peptides generated from food proteins. Also, utilization of modern nutrigenomics techniques for such peptides is discussed. Nutrigenomics has been rapidly applied to the field of nutrition and health. Although application of this strategy for studying food protein-derived bioactive peptides is still limited, it offers a great possibility for understanding and utilizing bioactive peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Affolter M, Raymond F, Kussmann M (2009) Omics in nutrition and health research. In: Mine Y, Miyashita K, Shahidi F (eds) Nutrigenomics and proteomics in health and disease. Wiley-Blackwell, Ames, pp 11–29

    Chapter  Google Scholar 

  • Aguilar MI (2004) Reversed-phase high-performance liquid chromatography. In: Aguilar MI (ed) HPLC of peptides and proteins. Humana Press, Totowa, pp 9–22

    Google Scholar 

  • Aito-Inoue M, Lackeyram D, Fan MZ, Sato K, Mine Y (2007) Transport of tripeptide, Gly-Pro-Hyp, across the intestinal brush border membrane of porcine. J Peptide Sci 13:468–474

    Article  CAS  Google Scholar 

  • Akimoto M, Namioka S, Arihara K, Tomita K, Ishikawa S, Itoh M (2007) Novel stress-biomarker and its application. Japan Patent (No. 2007–93597)

    Google Scholar 

  • Aleixandre A, Miguel M (2012) Food proteins and peptide as bioactive agents. In: Hettiarachchy NS, Sato K, Marshall MR, Kannan A (eds) Bioactive food proteins and peptides, applications in human health. CRC Press, Boca Raton, pp 131–180

    Google Scholar 

  • Arihara K (2006) Functional properties of bioactive peptides derived from meat proteins. In: Nollet LML, Toldrá F (eds) Advanced technologies for meat processing. CRC Press, Boca Raton, pp 247–273

    Google Scholar 

  • Arihara K (2012) Meat-based bioactive compounds and functional meat products. Food Sci Technol 26:26–28

    Google Scholar 

  • Arihara K, Ohata M (2011) Functional meat products. In: Saarela M (ed) Functional foods: concept to products, 2nd edn. Woodhead, Cambridge, pp 512–533

    Chapter  Google Scholar 

  • Arihara K, Nakashima Y, Mukai T, Ishikawa S, Itoh M (2001) Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Sci 67:434–437

    Google Scholar 

  • Arihara K, Ishikawa S, Itoh M (2011a)Bifidobacteriumgrowth promoting peptides derived from meat proteins. Japan Patent (No. 4726129)

    Google Scholar 

  • Arihara K, Tomita K, Ishikawa S, Itoh M, Akimoto M, Sameshima T (2011b) Anti-fatigue peptides derived from meat proteins. Japan Patent (No. 4828890)

    Google Scholar 

  • Astley S, Penn L (2009) Design of human nutrigenomics studies. Wageningen Academic, Wageningen

    Google Scholar 

  • Bagchi D, Lau FC, Bagchi M (2010) Genomics, proteomics and metabolomics in nutraceuticals and functional foods. Wiley-Blackwell, Ames

    Book  Google Scholar 

  • Bidlack WR, Rodriguez RL (2012) Nutritional genomics, the impact of dietary regulation of gene function on human disease. CRC Press, Boca Raton

    Google Scholar 

  • Boonen K (2009) Peptidomics of the mouse, unraveling the role of bioactive peptides in intercellular signaling. Lambert Academic, Saarbrücken

    Google Scholar 

  • Brody EP (2000) Biological activities of bovine glycomacropeptide. Br J Nutr 84:S39–S46

    Article  CAS  Google Scholar 

  • Bütikofer U, Meyer J, Sieber R, Walther B, Wechsler D (2008) Occurrence of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in different cheese varieties of Swiss origin. J Dairy Sci 91:29–38

    Article  Google Scholar 

  • Chen H-M, Muramoto K, Yamauchi F (1995) Antioxidative activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J Agric Food Chem 44:2619–2623

    Article  Google Scholar 

  • Chiba H, Yoshikawa M (1986) Biologically functional peptides from food proteins: new opioid peptides from milk proteins. In: Feeney RE, Whitaker JR (eds) Protein tailoring for food and medical users. Marcel Dekker, New York, pp 123–153

    Google Scholar 

  • Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the angiotensin converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648

    Article  CAS  Google Scholar 

  • Dainty R, Blom H (1995) Flavor chemistry of fermented sausages. In: Campbell-Platt G, Cook PE (eds) Fermented meats. Blackie Academic & Professional, Glasgow, pp 176–193

    Google Scholar 

  • Fiat A-M, Migliore-Samour D, Jolles P, Drout L, Collier C, Caen J (1993) Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunomodulating activities. J Dairy Sci 76:301–310

    Article  CAS  Google Scholar 

  • Fuchs D, Winkelmann I, Johnson IT, Mariman E, Wenzel U, Daniel H (2005) Proteomics in nutrition research: principles, technologies and applications. Br J Nutr 94:302–314

    Article  CAS  Google Scholar 

  • Fujita H, Yokoyama K, Yoshikawa M (2000) Classification and antihypertensive activity of ­angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J Food Sci 65:564–569

    Article  CAS  Google Scholar 

  • Gagnaire V, Molle D, Herrouin M, Leonil J (2001) Peptides identified during emmental cheese ripening: origin and proteolytic systems involved. J Agric Food Chem 49:4402–4413

    Article  CAS  Google Scholar 

  • Ghassem M, Arihara K, Babji AS, Said M, Ibrahim S (2011) Purification and identification of ACE inhibitory peptides from Haruan (Channa striatus) myofibrillar protein hydrolysate using HPLC-ESI-TOF MS/MS. Food Chem 129:1770–1777

    Article  CAS  Google Scholar 

  • Gobbetti M, Ferranti P, Smacchi E, Goffredi F, Addeo F (2000) Production of angiotensin-I converting-enzyme-inhibitory peptides in fermented milks started byLactobacillus delbrueckiisubsp.bulgaricusSS1 andLactococcus lactissubsp.cremorisFT4. Appl Environ Microbiol 66:3898–3904

    Article  CAS  Google Scholar 

  • Gobbetti M, Minervini F, Rizzello CG (2007) Bioactive peptides in dairy products. In: Hui YH (ed) Handbook of food products manufacturing: health, meat, milk, poultry, seafood, and vegetables. Wiley, Hoboken, pp 489–517

    Google Scholar 

  • Gomez-Ruiz JA, Ramos M, Recio I (2002) Angiotensin-converting enzyme-inhibitory peptides in Manchego cheeses manufactured with different starter cultures. Int Dairy J 12:697–706

    Article  CAS  Google Scholar 

  • Hammes WP, Haller D, Gänzle MG (2003) Fermented meat. In: Farnworth ER (ed) Handbook of fermented functional foods. CRC Press, Boca Raton, pp 251–275

    Google Scholar 

  • Hernändez-Ledesma B, Amigo L, Ramos M, Recio I (2004) Angiotensin converting enzyme inhibitory activity in commercial fermented products. J Agric Food Chem 52:1504–1510

    Article  Google Scholar 

  • Hertog MGL (1996) Epidemiological evidence on potential health properties of flavonoids. Proc Nutr Soc 55:385–387

    Article  CAS  Google Scholar 

  • Hettiarachchy NS, Sato K, Marshall MR, Kannan A (2012) Bioactive food proteins and peptides, application in human health. CRC Press, Boca Raton

    Google Scholar 

  • Hipkiss AR, Brownson CA (2000) A possible new role for the anti-aging peptide carnosine. Cell Mol Life Sci 57:747–753

    Article  CAS  Google Scholar 

  • Huttunen MM, Pekkinen M, Ahlstrom MEB, Lamberg-Allardt CJE (2007) Effects of bioactive peptides isoleucine-proline-proline (IPP), valine-proline-proline (VPP) and leucine-lysine-proline (LKP) on gene expression of osteoblasts differentiated from human mesenchymal stem cell. Br J Nutr 98:780–788

    Article  CAS  Google Scholar 

  • Ibrahim HR, Sugimoto Y, Aoki T (2000) Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. Biochim Biophys Acta 1523:196–205

    Article  CAS  Google Scholar 

  • Kannan A, Hettiarachchy N, Marshall M (2012) Food proteins and peptide as bioactive agents. In: Hettiarachchy NS, Sato K, Marshall MR, Kannan A (eds) Bioactive food proteins and peptides, applications in human health. CRC Press, Boca Raton, pp 1–28

    Google Scholar 

  • Kaput J (2007) Developing the promise of nutrigenomics through complete science and international collaborations. Forum Nutr 60:209–223

    Article  CAS  Google Scholar 

  • Kim S-K, Wijesekara I, Park EY, Matsumura Y, Nakamura Y, Sato K (2012) Proteins and peptide as antioxidants. In: Hettiarachchy NS, Sato K, Marshall MR, Kannan A (eds) Bioactive food proteins and peptides, applications in human health. CRC Press, Boca Raton, pp 97–115

    Google Scholar 

  • Koohmaraie M (1994) Muscle proteinases and meat aging. Meat Sci 36:93–104

    Article  CAS  Google Scholar 

  • Korhonen H, Pihlanto A (2007) Bioactive peptides from food proteins. In: Hui YH (ed) Handbook of food products manufacturing: health, meat, milk, poultry, seafood, and vegetables. Wiley, Hoboken, pp 5–38

    Google Scholar 

  • Li GH, Le GW, Shi YH, Shrestha S (2004) Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr Res 24:469–486

    CAS  Google Scholar 

  • Lottspeich F (1979) Novel opioid peptides derived from casein (b-Casomorphins) I. Isolation from bovine casein peptone. Hoppe-Seyler’s Z Physiol Chem 360:1211–1216

    Article  Google Scholar 

  • Mano H, Shimizu J, Wada M (2009) Microarrays: a powerful tool for studying the functions of food and its nutrients. In: Mine Y, Miyashita K, Shahidi F (eds) Nutrigenomics and proteomics in health and disease. Wiley-Blackwell, Ames, pp 341–349

    Google Scholar 

  • Masotti A, Sacco LD, Bottazzo GF, Alisi A (2010) Microarray technology: a promising tool in nutrigenomics. Crit Rev Food Sci Nutr 50:693–698

    Article  CAS  Google Scholar 

  • Meisel H, Walsh DJ, Murry B, FitzGerald RJ (2005) ACE inhibitory peptides. In: Mine Y, Shahidi F (eds) Nutraceutical proteins and peptides in health and disease. CRC Press, Boca Raton, pp 269–315

    Google Scholar 

  • Mellander O (1950) The physiological importance of the casein phosphopeptide calcium salts II: Peroral calcium dosage in infants. Acta Soc Med Uppsala 55:247–255

    CAS  Google Scholar 

  • Mine Y (2009) Peptidomics. In: Mine Y, Miyashita K, Shahidi F (eds) Nutrigenomics and proteomics in health and disease. Wiley-Blackwell, Ames, pp 375–386

    Chapter  Google Scholar 

  • Mine Y, Miyashita K, Shahidi F (2009) Nutrigenomics and proteomics in health and disease. Wiley-Blackwell, Ames

    Book  Google Scholar 

  • Nagaoka S (2012) Peptide-lipid interactions and functionalities. In: Hettiarachchy NS, Sato K, Marshall MR, Kannan A (eds) Food proteins and peptides: chemistry, functionality, interactions and commercialization. CRC Press, Boca Raton, pp 263–276

    Chapter  Google Scholar 

  • Nagaoka S, Futamura Y, Miwa K, Awano T, Yamauchi K, Kanamaru Y, Kojima T, Kuwata T (2001) Identification of novel hypocholesterolemic peptides derived from bovine b-lactoglobulin. Biochem Biophys Res Commun 281:11–17

    Article  CAS  Google Scholar 

  • Nakamura Y, Yamamoto N, Sakai K, Takano T (1995) Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J Dairy Sci 78:1253–1257

    Article  CAS  Google Scholar 

  • Nakashima Y, Arihara K, Sasaki A, Ishikawa S, Itoh M (2002) Antihypertensive activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats. J Food Sci 67:434–437

    Article  CAS  Google Scholar 

  • Nishimura T, Rhue MR, Okitani A, Kato H (1988) Components contributing to the improvement of meat taste during storage. Agric Biol Chem 52:2323–2330

    Article  CAS  Google Scholar 

  • Nurminen M-L, Sipola M, Kaarto H, Pihlanto-Leppälä A, Piiola K, Korpela R, Tossavainen O, Korhonen H, Vapaatalo H (2000) a-Lactophin lowers blood pressure via radiotelemetry in normotensive and spontaneously hypertensive rats. Life Sci 66:1535–1543

    Article  CAS  Google Scholar 

  • Oshima G, Shimabukuro H, Nagasawa K (1979) Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase. Biochim Biophys Acta 566:128–137

    Article  CAS  Google Scholar 

  • Otani H, Hata I (1995) Inhibition of proliferative responses of mouse spleen lymphocytes and rabbit Peyer’s patch cells by bovine milk caseins and their digests. J Dairy Res 62:339–348

    Article  CAS  Google Scholar 

  • Owusu-Aspenten R (2010) Bioactive peptides, application for improving nutrition and health. CRC Press, Boca Raton

    Google Scholar 

  • Pihlanto A, Korhonen H (2003) Bioactive peptides and proteins. Adv Food Nutr Res 47:175–276

    Article  CAS  Google Scholar 

  • Pouliot Y, Gauthier SF, Groleau PE (2006) Membrane-based fractionation and purification strategies for bioactive peptides. In: Mine Y, Shahidi F (eds) Nutraceutical proteins and peptides in health and disease. CRC Press, Boca Raton, pp 639–658

    Google Scholar 

  • Saarela M (2011) Functional foods, concept to product, 2nd edn. Woodhead, Cambridge

    Book  Google Scholar 

  • Saiga A, Tanabe S, Nishimura T (2003) Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J Agric Food Chem 51:3661–3667

    Article  CAS  Google Scholar 

  • Saito T, Nakamura T, Kitazawa H, Kawai Y, Itoh T (2000) Isolation and structural analysis of antihypertensive peptides that exist naturally in Gouda cheese. J Dairy Sci 83:1434–1440

    Article  CAS  Google Scholar 

  • Sato K, Hashimoto K (2012) Large-scale fractionation of biopeptides. In: Hettiarachchy NS, Sato K, Marshall MR, Kannan A (eds) Food proteins and peptides: chemistry, functionality, interactions and commercialization. CRC Press, Boca Raton, pp 395–408

    Chapter  Google Scholar 

  • Shen TL, Noon KR (2004) Liquid chromatography-mass spectrometry and tandem mass spectrometry of peptides and proteins. In: Aguilar MI (ed) HPLC of peptides and proteins. Humana Press, Totowa, pp 111–139

    Google Scholar 

  • Thomson-Smith LD (2010) Nutrigenomics, nutrition and DNA could go hand in hand. Fastbook, Beau Bassin/ Mauritius

    Google Scholar 

  • Toldrá F (2004) Dry. In: Jensen WK, Devine C, Dikeman M (eds) Encyclopedia of meat sciences. Elsevier, Oxford, pp 360–365

    Chapter  Google Scholar 

  • Tomita M, Takase M, Bellamy WR, Shimamura S (1994) A review, the active peptide of lactoferrin. Acta Paediatr Japan 36:585–591

    Article  CAS  Google Scholar 

  • Vegarud GE, Langsrud T, Svening C (2000) Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. Br J Nutr 84:91–98

    Article  Google Scholar 

  • Webster NR (1998) Opioid and immune system. Br J Anesth 81:835–836

    Article  CAS  Google Scholar 

  • Whitfield P, Kirwan J (2010) Metabolomics: an emerging postgenomic tool for nutrition. In: Bagchi D, Lau FC, Bagchi M (eds) Genomics, proteomics and metabolomics in nutraceuticals and functional foods. Wiley-Blackwell, Ames, pp 271–285

    Chapter  Google Scholar 

  • Yamaji T, Kume H (2008) Hepatoprotective effects of whey protein and whey peptides on hepatitis. Milk Sci 56:115–118

    CAS  Google Scholar 

  • Yasumatsu H, Tanabe S (2010) The casein peptide Asn-Pro-Trp-Asp-Gln enforces the intestinal tight junction partly by increasing occludin expression in Caco-2 cells. Br J Nutr 104:951–956

    Article  CAS  Google Scholar 

  • Young D, Mine Y (2009) Functional bioactive proteins and peptides in nutrigenomics. In: Mine Y, Miyashita K, Shahidi F (eds) Nutrigenomics and proteomics in health and disease. Wiley-Blackwell, Ames, pp 129–144

    Chapter  Google Scholar 

  • Zhang X, Wang W, Xiao K (2010) Novel omics technologies in nutraceutical and functional food research. In: Bagchi D, Lau FC, Bagchi M (eds) Genomics, proteomics and metabolomics in nutraceuticals and functional foods. Wiley-Blackwell, Ames, pp 11–22

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keizo Arihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arihara, K. (2013). Relevance of Peptides Bioactivity in Foods. In: Toldrá, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_23

Download citation

Publish with us

Policies and ethics