Skip to main content

Proteomics and Applications to Food Science in Rice

  • Chapter
  • First Online:
  • 2994 Accesses

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

Abstract

The major purpose of rice cultivation is to produce the high-quality and high-yield grains that are consumed as the staple food in Asia especially in the southeast area. In addition, seeds also play a central role in rice life cycle. Acquiring high-quality viable seeds is a prerequisite for rice cultivation. Not surprisingly, study about rice seed especially grain filling and seed germination is one of the hot areas in rice biology. Furthermore, uncovering the regulatory mechanism of rice grain filling and seed germination is also important for rice breeding and production. With the advent of proteomic technologies, large-scale protein profiling has been applied to elucidate the mechanism of these two complex processes, which showed that the regulation happened in different pathways at different levels. Abiotic stresses including drought, flood, high or low temperature, and salinity will seriously affect the grain filling process and hence decrease the yield and quality, and they can also inhibit rice seed germination. In this review, we summarize rice seed proteomics and rice proteomics against environmental stress. And we also discuss future perspectives of food science in rice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ABA:

Abscisic acid

GA:

Gibberellic acid

TCA:

Tricarboxylic acid

ROS:

Reactive oxygen species

JA:

Jasmonic acid

References

  • Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4:2072–2081

    Article  CAS  Google Scholar 

  • Agrawal GK, Hajduch M, Graham K, Thelen JJ (2008) In-depth investigation of the soybean seed-filling proteome and comparison with a parallel study of rapeseed. Plant Physiol 148:504–518

    Article  CAS  Google Scholar 

  • Ali GM, Komatsu S (2006) Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res 5:396–403

    Article  CAS  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Bak-Jensen KS, Laugesen S, Ostergaard O, Finnie C, Roepstorff P, Svensson B (2007) Spatio-temporal profiling and degradation of alpha-amylase isozymes during barley seed germination. FEBS J 274:2552–2565

    Article  CAS  Google Scholar 

  • Bethke PC, Libourel IG, Reinöhl V, Jones RL (2006) Sodium nitroprusside, cyanide, nitrite, and nitrate breakArabidopsisseed dormancy in a nitric oxide-dependent manner. Planta 223:805–812

    Article  CAS  Google Scholar 

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  Google Scholar 

  • Boonjung H, Fukai S (1996) Effects of soil water deficit at different growth stages on rice growth and yield under upland conditions. 2. Phenology, biomass production and yield. Field Crop Res 48:47–55

    Article  Google Scholar 

  • Botha FC, Potgieter GP, Botha AM (1992) Respiratory metabolism and gene expression during seed germination. J Plant Growth Regul 11:211–224

    Article  CAS  Google Scholar 

  • Bressani R, Elias LG, Juliano BO (1971) Evaluation of the protein quality and milled rices differing in protein content. J Agric Food Chem 19:1028–1034

    Article  CAS  Google Scholar 

  • Cho HT, Kende H (1997) Expression of expansion genes is correlated with growth in deepwater rice. Plant Cell 9:1661–1671

    CAS  Google Scholar 

  • Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S (2009) Dehydration-responsive nuclear proteome of rice (Oryza sativaL.) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. Mol Cell Proteomics 8:1579–1598

    Article  CAS  Google Scholar 

  • Crofts AJ, Crofts N, Whitelegge JP, Okita TW (2010) Isolation and identification of cytoskeleton-associated prolamine mRNA binding proteins from developing rice seeds. Planta 231:1261–1276

    Article  CAS  Google Scholar 

  • Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    Article  CAS  Google Scholar 

  • Davatgar N, Neishabouri MR, Sepaskhah AR, Soltani A (2009) Physiological and morphological responses of rice (Oryza sativaL.) to varying water stress management strategies. Int J Plant Prod 3:19–32

    Google Scholar 

  • Devos MK, Gale DM (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–643

    CAS  Google Scholar 

  • Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507

    Article  CAS  Google Scholar 

  • Doroshenk KA, Crofts AJ, Morris RT, Wyrick JJ, Okita TW (2009) Proteomic analysis of cytoskeleton-associated RNA binding proteins in developing rice seed. J Proteome Res 8:4641–4653

    Article  CAS  Google Scholar 

  • Dreyfuss G, Kim VN, Kataoka N (2002) Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol 3:195–205

    Article  CAS  Google Scholar 

  • Dung LV, Mikami I, Amano E, Sano Y (2000) Study on the response of dull endosperm 2–2, du2-2, to two Wx alleles in rice. Breed Sci 50:215–219

    Article  CAS  Google Scholar 

  • Ehrenshaft M, Brambl R (1990) Respiration and mitochondrial biogenesis in germinating embryos of maize. Plant Physiol 93:295–304

    Article  CAS  Google Scholar 

  • Fedoroff NV (2002) RNA-binding proteins in plants: the tip of an iceberg. Curr Opin Plant Biol 5:452–459

    Article  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523

    Article  CAS  Google Scholar 

  • Finnie C, Melchior S, Roepstorff P, Svensson B (2002) Proteome analysis of grain filling and seed maturation in barley. Plant Physiol 129:1308–1319

    Article  CAS  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2002) Proteomics ofArabidopsisseed germination. A comparative study of wild-type and gibberellin-deficient seeds. Plant Physiol 129:823–837

    Article  CAS  Google Scholar 

  • Gallardo K, Le Signor C, Vandekerckhove J, Thompson RD, Burstin J (2003) Proteomics ofMedicago truncatulaseed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol 133:664–682

    Article  CAS  Google Scholar 

  • Gallardo K, Firnhaber C, Zuber H, Héricher D, Belghazi M, Henry C, Küster H, Thompson R (2007) A combined proteome and transcriptome analysis of developingMedicago truncatulaseeds: evidence for metabolic specialization of maternal and filial tissues. Mol Cell Proteomics 6:2165–2179

    Article  CAS  Google Scholar 

  • Gangashetti MG, Jena KK, Shenoy VV, Freeman WH (2004) Inheritance of elongated uppermost internode (EUI) and identification of a RAPD marker linked toeuigene in rice. Curr Sci 87:469–475

    CAS  Google Scholar 

  • Gaur VS, Singh US, Kumar A (2011) Transcriptional profiling and in silico analysis of Dof transcription factor gene family for understanding their regulation during seed development of riceOryza sativaL. Mol Biol Rep 38:2827–2848

    Article  CAS  Google Scholar 

  • Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117

    Article  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean: establishment of highresolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  CAS  Google Scholar 

  • Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling inBrassica napus. Developmental characterization of metabolic isozymes using high-resolution two dimensional gel electrophoresis. Plant Physiol 141:32–46

    Article  CAS  Google Scholar 

  • Hamaker BR (1994) The influence of rice protein on rice quality. In: Marshall WE, Wadsworth JI (eds) Rice science and technology. Dekker, New York, pp 177–194

    Google Scholar 

  • Han F, Chen H, Li XJ, Yang MF, Liu GS, Shen SH (2009) A comparative proteomic analysis of rice seedlings under various high-temperature stresses. Biochim Biophys Acta 1794:1625–1634

    Article  CAS  Google Scholar 

  • Hayashi T, Yamaguchi T, Nakayama K, Komatsu S, Koike S (2004) High nitrogen conditions enhance the cooling damage to pollen in rice plants: proteome analysis of mature anthers. In: Fischer T et al (eds) New directions for a diverse planet. Proceedings for the 4th international crop science congress, Brisbane

    Google Scholar 

  • He D, Han C, Yao J, Shen S, Yang P (2011) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics. doi:10.1002/pmic.201000598

  • Hoffmann-Benning S, Kende H (1992) On the role of abscisic acid and gibberellin in the regulation of growth in rice. Plant Physiol 99:1156–1161

    Article  CAS  Google Scholar 

  • Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008) Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13

    Article  CAS  Google Scholar 

  • Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992

    Article  CAS  Google Scholar 

  • Isshiki M, Nakajima M, Satoh H, Shimamoto K (2000) Dull rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J 23:451–460

    Article  CAS  Google Scholar 

  • Jagadish SV, Craufurd PQ, Wheeler TR (2007) High temperature stress and spikelet fertility in rice (Oryza sativaL.). J Exp Bot 58:1627–1635

    Article  CAS  Google Scholar 

  • Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, Hughes T, White RG, Gubler F, Dolferus R (2011) Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol 156:647–662

    Article  CAS  Google Scholar 

  • Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation inArabidopsisseeds and during germination. Plant Physiol 138:790–802

    Article  CAS  Google Scholar 

  • Kang HG, Park S, Matsuoka M, An G (2005) White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J 42:901–911

    Article  CAS  Google Scholar 

  • Kang S, Chen S, Da S (2010) Proteomics characteristics of rice leaves in response to environmental factors. Front Biol 5:246–254

    Article  CAS  Google Scholar 

  • Kende H, van der Knaap E, Cho HG (1998) Deep water rice-a model plant to study stem elongation. Plant Physiol 118:1105–1110

    Article  CAS  Google Scholar 

  • Kikuchi S, Satoh K, Kawagashira N et al (2003) Collection mapping, and annotation of over 28000 cDNA clones from japonica rice. Science 301:376–379

    Article  Google Scholar 

  • Kim ST, Kang SY, Wang Y, Kim SG, Hwang DH, Kang KY (2008) Analysis of embryonic proteome modulation by GA and ABA from germinating rice seeds. Proteomics 8:3577–3587

    Article  CAS  Google Scholar 

  • Kim EH, Kim YS, Park SH, Koo YJ, Choi YD, Chung YY, Lee IJ, Kim JK (2009) Methyl ­jasmonate reduces grain yield by mediating stress signals to alter spikelet development in rice. Plant Physiol 149:1751–1760

    Article  CAS  Google Scholar 

  • Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J, Wolters D, Yates JR 3rd (2002) Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA 99:11969–11974

    Article  CAS  Google Scholar 

  • Laino P, Shelton D, Finnie C, De Leonardis AM, Mastrangelo AM, Svensson B, Lafiandra D, Masci S (2010) Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress. Proteomics 10:2359–2368

    Article  CAS  Google Scholar 

  • Lao NT, Schoneveld O, Mould RM, Hibberd JM, Gray JC, Kavanagh TA (1999) AnArabidopsisgene encoding a chloroplast-targeted â-amylase. Plant J 20:519–527

    Article  CAS  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    Article  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  CAS  Google Scholar 

  • Liu JX, Bennett J (2011) Reversible and irreversible drought-induced changes in the anther proteome of rice (Oryza sativaL.) genotypes IR64 and moroberekan. Mol Plant 4:59–69

    Article  CAS  Google Scholar 

  • Liu JX, Raveendran M, Mushtaq R, Bennett J (2005) Proteomic analysis of drought-responsiveness in rice: OsADF5. In: Tuberosa R, Phillips RL, Gale M (eds) In the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, pp 251–262

    Google Scholar 

  • Liu Y, Shi L, Ye N, Liu R et al (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy inArabidopsis. New Phytol 183:1030–1042

    Article  CAS  Google Scholar 

  • Liu X, Guo T, Wan X, Wang H, Zhu M, Li A, Su N, Shen Y, Mao B, Zhai H, Mao L, Wan J (2010) Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice. BMC Genomics 11:730

    Article  CAS  Google Scholar 

  • Matsukura C, Saitoh T, Hirose T, Ohsugi R, Perata P, Yamaguchi J (2000) Sugar uptake and transport in rice embryo. Expression of companion cell-specific sucrose transporter (OsSUT1) induced by sugar and light. Plant Physiol 124:85–93

    Article  CAS  Google Scholar 

  • Mechin V, Thevenot C, Le Guilloux M, Prioul J-L, Damerval C (2007) Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. Plant Physiol 143:1203–1219

    Article  CAS  Google Scholar 

  • Mitsunaga S, Tashiro T, Yamaguchi J (1994) Identification and characterization of gibberellin-insensitive mutants selected from among dwarf mutants of rice. Theor Appl Genet 87:705–712

    Article  CAS  Google Scholar 

  • Mitsunaga S, Kobayashi M, Fukui S, Fukuoka K, Kawakami O, Yamaguchi J, Ohshima M, Mitsui T (2007) Alpha-amylase production is induced by sulfuric acid in rice aleurone cells. Plant Physiol Biochem 45:922–925

    Article  CAS  Google Scholar 

  • Mushtaq R, Katiyar S, Bennett J (2008) Proteomic analysis of drought stress-responsive proteins in rice endosperm affecting grain quality. J Crop Sci Biotechnol 11:227–232

    Google Scholar 

  • Muthurajan R, Shobbar ZS, Jagadish SV, Bruskiewich R, Ismail A, Leung H, Bennett J (2011) Physiological and proteomic responses of rice peduncles to drought stress. Mol Biotechnol 48:173–182

    Article  CAS  Google Scholar 

  • Myers AM, Morell MK, James MG, Ball SG (2000) Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol 122:989–997

    Article  CAS  Google Scholar 

  • Neilson KA, Gammulla CG, Mirzaei M, Imin N, Haynes PA (2010) Proteomic analysis of temperature stress in plants. Proteomics 10:828–845

    Article  CAS  Google Scholar 

  • Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317

    Article  CAS  Google Scholar 

  • Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK (2009) Overexpresson of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 150:1368–1379

    Article  CAS  Google Scholar 

  • Oliver SN, Van Dongen JT, Alfred SC, Mamun EA, Zhao X, Saini HS, Fernandes SF, Blanchard CL, Sutton BG, Geigenberger P, Dennis ES, Dolferus R (2005) Cold-induced repression of the rice anther-specific cell wall invertase geneOSINV4is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ 28:1534–1551

    Article  CAS  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates apoplastic sugar transport and is a ­potential signal for cold-induced pollen sterility in rice. Plant Cell Physiol 48:1319–1330

    Article  CAS  Google Scholar 

  • Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of a-amanitin on theArabidopsisseed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134:1598–1613

    Article  CAS  Google Scholar 

  • Repetto O, Rogniaux H, Firnhaber C, Zuber H, Küster H, Larré C, Thompson R, Gallardo K (2008) Exploring the nuclear proteome ofMedicago truncatulaat the switch towards seed filling. Plant J 56:398–410

    Article  CAS  Google Scholar 

  • Rubel A, Rinne RW, Canvin DT (1972) Protein, oil, and fatty-acid in developing soybean seeds. Crop Sci 12:739–741

    Article  CAS  Google Scholar 

  • Ruuska SA, Girke T, Benning C, Ohlrogge JB (2002) Contrapuntal networks of gene expression duringArabidopsisseed filling. Plant Cell 14:1191–1206

    Article  CAS  Google Scholar 

  • Salekdeh GH, Komatsu S (2007) Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7:2976–2996

    Article  CAS  Google Scholar 

  • Salon C, Raymond P, Pradet A (1988) Quantification of carbon fluxes through the tricarboxylic acid cycle in early germinating lettuce embryos. J Biol Chem 263:12278–12287

    CAS  Google Scholar 

  • Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic over expression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30:399–406

    Article  CAS  Google Scholar 

  • Schmidt MW, Houseman A, Ivanov AR, Wolf DA (2007) Comparative proteomic and transcriptomic profiling of the fission yeastSchizosaccharomyces pombe. Mol Syst Biol 3:79

    Article  CAS  Google Scholar 

  • Setter TL, Flannigan BA (2001) Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. J Exp Bot 52:1401–1408

    Article  CAS  Google Scholar 

  • Shingaki-Wells RN, Huang S, Taylor NL, Carroll AJ, Zhou W, Millar AH (2011) Differential molecular responses of rice and wheat coleoptiles to anoxia reveal novel metabolic adaptations in amino acid metabolism for tissue tolerance. Plant Physiol 156:1706–1724

    Article  CAS  Google Scholar 

  • Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annu Rev Plant Biol 56:73–98

    Article  CAS  Google Scholar 

  • Spadaro D, Yu B, Spoel SH, Chu C et al (2010) The redox switch: dynamic regulation of protein function by cysteine modifications. Physiol Plant 138:360–371

    Article  CAS  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    Article  CAS  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops. Environ Exp Bot 67:429–443

    Article  CAS  Google Scholar 

  • The International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • The Rice Annotation Project (2007) Crated genome annotation ofOryza sativassp. Japonica and comparative genome analysis withArabidopsis thaliana. Genome Res 17:175–183

    Article  Google Scholar 

  • Vensel WH, Tanaka CK, Cai N, Wong JH, Buchanan BB, Hurkman WJ (2005) Developmental changes in the metabolic protein profiles of wheat endosperm. Proteomics 5:1594–1611

    Article  CAS  Google Scholar 

  • Watson BS, Asirvatham VS, Wang L, Sumner LW (2003) Mapping the proteome of barrel medic (Medicago truncatula). Plant Physiol 131:1104–1123

    Article  Google Scholar 

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Annu Rev Plant Biol 56:253–279

    Article  CAS  Google Scholar 

  • Wei G, Tao Y, Liu G, Chen C, Luo R, Xia H, Gan Q, Zeng H, Lu Z, Han Y, Li X, Song G, Zhai H, Peng Y, Li D, Xu H, Wei X, Cao M, Deng H, Xin Y, Fu X, Yuan L, Yu J, Zhu Z, Zhu L (2009) A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci USA 106:7695–7701

    Article  CAS  Google Scholar 

  • Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T (2008) Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol 148:908–925

    Article  CAS  Google Scholar 

  • Yaish MW, El-Kereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ (2010) The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet 6:e1001098

    Article  CAS  Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    Article  CAS  Google Scholar 

  • Yang P, Liang Y, Shen S, Kuang T (2006) Proteome analysis of rice uppermost internodes at the milky stage. Proteomics 6:3330–3338

    Article  CAS  Google Scholar 

  • Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368

    Article  CAS  Google Scholar 

  • Yano H, Kuroda M (2006) Disulfide proteome yields a detailed understanding of redox regulations: a model study of thioredoxin-linked reactions in seed germination. Proteomics 6:294–300

    Article  CAS  Google Scholar 

  • Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  Google Scholar 

  • Zeeman SC, Northrop F, Smith AM, Rees T (1998) A starch-accumulating mutant ofArabidopsisthaliana deficient in a chloroplastic starch hydrolyzing enzyme. Plant J 15:357–365

    Article  CAS  Google Scholar 

  • Zeeman SC, Pilling E, Tiessen A, Kato L, Donald AM, Smith AM (2002) Starch synthesis inArabidopsis. Granule synthesis, composition, and structure. Plant Physiol 129:516–529

    Article  CAS  Google Scholar 

  • Zeeman SC, Smith SM, Smith AM (2004a) The breakdown of starch in leaves. New Phytol 163:247–261

    Article  CAS  Google Scholar 

  • Zeeman SC, Thorneycroft D, Schupp N, Chapple A, Weck M et al (2004b) Plastidial a-glucan phosphorylase is not required for starch degradation inArabidopsisleaves but has a role in the tolerance of abiotic stress. Plant Physiol 135:849–858

    Article  CAS  Google Scholar 

  • Zhang H, Shen W, Xu L (2003) Effect of nitric oxide on the germination of wheat seeds and its reactive oxygen species metabolisms under osmotic stress. Acta Bot Sin 45:901–905

    CAS  Google Scholar 

  • Zhang H, Chen T, Wang Z, Yang J, Zhang J (2010a) Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. J Exp Bot 61:3719–3733

    Article  CAS  Google Scholar 

  • Zhang J, Nallamilli BR, Mujahid H, Peng Z (2010b) OsMADS6 plays an essential role in endosperm nutrient accumulation and is subject to epigenetic regulation in rice (Oryza sativa). Plant J 64:604–617

    Article  CAS  Google Scholar 

  • Zhao C, Wang J, Cao M, Zhao K, Shao J, Lei T, Yin J, Hill GG, Xu N, Liu S (2005) Proteomic changes in rice leaves during development of field-grown rice plants. Proteomics 5:961–972

    Article  CAS  Google Scholar 

  • Zhao M, Tian Q, Zhang W (2007) Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance inArabidopsis. Plant Physiol 144:206–217

    Article  CAS  Google Scholar 

  • Zhu T, Budworth P, Chen W, Provart N, Chang HS, Guimil S, Su W, Estes B, Zou G, Wang X (2003) Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnol J 1:59–70

    Article  CAS  Google Scholar 

  • Zhu G, Ye N, Yang J, Peng X, Zhang J (2011) Regulation of expression of starch synthesis genes by ethylene and ABA in relation to the development of rice inferior and superior spikelets. J Exp Bot. doi:10.1093/jxb/err088

  • Zinn KE, Tunc-Ozdemir M, Harper JF (2010) Temperature stress and plant sexual reproduction: uncovering the weakest links. J Exp Bot 61:1959–1968

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setsuko Komatsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yang, P., Nouri, MZ., Komatsu, S. (2013). Proteomics and Applications to Food Science in Rice. In: Toldrá, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_20

Download citation

Publish with us

Policies and ethics