Skip to main content

Fruits and Vegetables

  • Chapter
  • First Online:
Proteomics in Foods

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

  • 2987 Accesses

Abstract

Fruits and vegetables are essential components of a healthy balanced diet, as they provide nutrients, vitamins, minerals, and fiber. They are integral to the recommendation by the World Health Organization to eat five portions a day. It is important, therefore, to produce fruits and vegetables that have high levels of these beneficial compounds, as well as their having a pleasing taste and appearance. In order to do this, we must understand the molecular events that occur during fruit and vegetable development and ripening, as well as minimizing deleterious changes from harvesting, stress, and storage. This chapter describes our current understanding of these processes in terms of the changes to the proteome and individual proteins that have been identified using mass spectrometry. This knowledge will enable plant breeders to optimize the dietary value of crops and minimize losses to yields through stress and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi N, Holford P, McGlasson B (2002) Application of two-dimensional gel electrophoresis to detect proteins associated with harvest maturity in stone fruit. Postharvest Biol Technol 26:1–13

    Article  CAS  Google Scholar 

  • Adams-Phillips L, Barry C, Giovannoni J (2004) Signal transduction systems regulating fruit ripening. Trends Plant Sci 9:331–338

    Article  CAS  Google Scholar 

  • Afroz A, Ali GM, Mir A, Komatsu S (2011) Application of proteomics to investigate stress-induced proteins for improvement in crop protection. Plant Cell Rep 30:745–763

    Article  CAS  Google Scholar 

  • Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–1193

    Article  CAS  Google Scholar 

  • Barone A, Chiusano ML, Ercolano MR, Giuliano G, Grandillo S, Frusciante L (2009) Structural and functional genomics of tomato. Intl J Plant Genet 2008:1–12

    Article  Google Scholar 

  • Barsan C, Sanchez-Bel P, Rombaldi C, Egea I, Rossignol M, Kuntz M, Zouine M, Latche A, Bouzayen M, Pech J-C (2010) Characteristics of the tomato chromoplast revealed by proteomic analysis. J Exp Bot 61:2413–2431

    Article  CAS  Google Scholar 

  • Baxter CJ, Sabar M, Quick WP, Sweetlove LJ (2005) Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. J Exp Bot 56:1591–1604

    Article  CAS  Google Scholar 

  • Bianco L, Lopez L, Scalone AG, Di Carli M, Desiderio A, Benvenuto E, Perrotta G (2009) Strawberry proteome characterization and its regulation during fruit ripening and in different genotypes. J Proteomics 72:586–607

    Article  CAS  Google Scholar 

  • Boggio SB, Palatnik JF, Heldt HW, Valle EM (2000) Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill. Plant Sci 159:125–133

    Article  CAS  Google Scholar 

  • Bradshaw JE, Mackay GR (1994) Breeding strategies for clonally propagated potatoes. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CAB International Press, Wallingford, pp 467–497

    Google Scholar 

  • Cánovas FM, Dumas-Gaudot E, Recorbet G, Jorrin J, Mock H-P, Rossignol M (2004) Plant proteome analysis. Proteomics 4:285–298

    Article  Google Scholar 

  • Carrari F, Fernie AR (2006) Metabolic regulation underlying tomato fruit development. J Exp Bot 57:1883–1897

    Article  CAS  Google Scholar 

  • Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N (2011) Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72:1293–1307

    Article  CAS  Google Scholar 

  • DiLeo MV, Strahan GD, den Bakker M, Hoekenga OA (2011) Weighted correlation network analysis (WGCNA) applied to the tomato fruit metabolome. PLoS ONE 6:e26683

    Article  CAS  Google Scholar 

  • Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507

    Article  CAS  Google Scholar 

  • Faurobert M, Mihr C, Bertin N, Pawlowski T, Negroni L, Sommerer N, Causse M (2007) Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol 143:1327–1346

    Article  CAS  Google Scholar 

  • Fei Z, Joung J-G, Tang X, Zheng Y, Huang M, Lee JM, McQuinn R, Tieman DM, Alba R, Klee HJ, Giovannoni JJ (2011) Tomato functional genomics database: a comprehensive resource and analysis package for tomato functional genomics. Nucl Acids Res 39:D1156–D1163

    Article  Google Scholar 

  • Fraser PD, Enfissi EM, Bramley PM (2009) Genetic engineering of carotenoid formation in tomato fruit and the potential application of systems and synthetic biology approaches. Archiv Biochem Biophys 483:196–204

    Article  CAS  Google Scholar 

  • Gazanchian A, Hajheidari M, Khoshkholgh Sima N, Hosseini SG (2007) Proteome response of Elymus elongatum to severe water stress and recovery. J Exp Bot 58:291–300

    Article  CAS  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  CAS  Google Scholar 

  • Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960

    Article  CAS  Google Scholar 

  • Ireland HE, Harding SJ, Bonwick GA, Jones M, Smith CJ, Williams JHH (2004) Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers 9:139–155

    Article  Google Scholar 

  • Jenks MA, Bebeli PJ (2011) Breeding for fruit quality. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Kader AA (2002) Post harvest technology of horticultural crops, 3rd edn. University of California Agriculture and Natural Resources, Oakland

    Google Scholar 

  • Kamal AHM, Kim KH, Shin KH, Choi JS, Baik BK, Tsujimoto H, Heo HY, Park CS, Woo SH (2010) Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Aust J Crop Sci 4:196–208

    CAS  Google Scholar 

  • Karlova R, Rosin FM, Busscher-Lange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  CAS  Google Scholar 

  • Katz E, Fon M, Eigenheer RA, Phinney BS, Fass JN, Lin D, Sadka A, Blumwald E (2010) A label-free differential quantitative mass spectrometry method for the characterization and identification of protein changes during citrus fruit development. Proteome Sci 8:68–87

    Article  CAS  Google Scholar 

  • Katz E, Hwan Boo K, Youn Kim H, Eigenheer RA, Phinney BS, Shulaev V, Negre-Zakharov F, Sadka A, Blumwald E (2011) Label-free shotgun proteomics and metabolite analysis reveal a significant metabolic shift during citrus fruit development. J Exp Bot 62:5367–5384

    Article  CAS  Google Scholar 

  • Kimura M, Yamamoto YY, Seki M, Sakurai T, Sato M, Abe T, Yoshida S, Manabe K, Shinozaki K, Matsui M (2003) Identification of Arabidopsis genes regulated by high light–stress using cDNA microarray. Photochem Photobiol 77:226–233

    CAS  Google Scholar 

  • Kok EJ, Lehesranta SJ, van Dijk JP, Helsdingen JR, Dijksma WTP, Van Hoef AMA, Koistinen KM, Karenlampi SO, Kuiper HA, Keijer J (2008) Changes in gene and protein expression during tomato ripening – consequences for the safety assessment of new crop plant varieties. Food Sci Technol Int 14:503–518

    Article  CAS  Google Scholar 

  • Larrainzar E, Wienkoop S, WeckwerthW LR, Arrese-Igor C, González M (2007) Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroids responses to drought stress. Plant Physiol 144:1495–1507

    Article  CAS  Google Scholar 

  • Lee JM, Kim S, Lee JY, Yoo EU, Cho MC, Cho MR, Kim B-D, Bahk YY (2006) A differentially expressed proteomic analysis in placental tissues in relation to pungency during the pepper fruit development. Proteomics 6:5248–5259

    Article  CAS  Google Scholar 

  • Lee D-G, Ahsan N, Lee S-H, Kang KY, Bahk JD, Lee I-J, Lee B-H (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7:3369–3383

    Article  CAS  Google Scholar 

  • Lehesranta SJ, Davies HV, Shepherd LVT, Nunan N, McNicol JW, Auriola S, Koistinen KM, Suomalainen S, Kokko HI, Karenlampi SO (2005) Comparison of tuber proteomes of potato varieties, landraces, and genetically modified lines. Plant Physiol 138:1690–1699

    Article  CAS  Google Scholar 

  • Lehesranta SJ, Davies HV, Shepherd LVT, Koistinen KM, Massat N, Nunan N, McNicol JW, Kärenlampi SO (2006) Proteomic analysis of the potato tuber life cycle. Proteomics 6:6042–6052

    Article  CAS  Google Scholar 

  • Lehesranta SJ, Koistinen KM, Massat N, Davies HV, Shepherd LVT, McNicol JW, Cakmak I, Cooper J, Luck L, Karenlampi SO, Leifert C (2007) Effects of agricultural production systems and their components on protein profiles of potato tubers. Proteomics 7:597–604

    Article  CAS  Google Scholar 

  • Lester GE, Saftner RA (2011) Organically versus conventionally grown produce: common production inputs, nutritional quality, and nitrogen delivery between the two systems. J Agric Food Chem 59:10401–10406

    Article  CAS  Google Scholar 

  • Lin BL, Wang JS, Liu HC, Chen RW, Meyer Y, Barakat A, Delseny M (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress Chaperones 16:201–208

    Article  Google Scholar 

  • Lopez-Matas MA, Nunez P, Soto A, Allona I, Casado R, Collada C, Guevara M-A, Aragoncillo C, Luis GL (2004) Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures. Plant Physiol 134:1708–1717

    Article  CAS  Google Scholar 

  • Marentes E, Griffith M, Mlynarz A, Brush RA (1993) Proteins accumulate in the apoplast of winter rye leaves during cold acclimation. Physiol Plant 87:499–507

    Article  CAS  Google Scholar 

  • Miernyk JA (1997) The 70 kDa stress-related proteins as molecular chaperones. Trends Plant Sci 2:80–87

    Google Scholar 

  • Minas IS, Tanou G, Belghazi M, Job D, Manganaris GA, Molassiotis A, Vasilakakis M (2012) Physiological and proteomic approaches to address the active role of ozone in kiwifruit post-harvest ripening. J Exp Bot (in press)

    Google Scholar 

  • Mounet F, Moing A, Garcia V, Petit J, Maucourt M, Deborde C, Bernillon S, Le Gall G, Colquhoun I, Defernez M, Giraudel L, Rolin D, Rothan C, Lemaire-Chamley M (2009) Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol 109:1505–1528

    Article  Google Scholar 

  • Muccilli V, Licciardell C, Fontanini D, Russo DP, Cunsolo V, Saletti R, Recupero GR, Foti S (2009) Proteome analysis of Citrus sinensis L. (Osbeck) flesh at ripening time. J Proteomics 73:134–152

    Article  CAS  Google Scholar 

  • Nam MH, Kim SI, Liu JR, Yang DC, Lim YP, Kwon KH, Yoo JS, Park YM (2005) Proteomic analysis of Korean ginseng (Panax ginseng C.A. Meyer). J Chromatogr B 815:147–155

    Article  CAS  Google Scholar 

  • Nawrocki A, Thorup-Kristensen K, Jensen ON (2011) Quantitative proteomics by 2DE and MALDI MS/MS uncover the effects if organic and conventional cropping methods on vegetable products. J Proteomics 74:2810–2825

    Article  CAS  Google Scholar 

  • Nilo R, Saffie C, Lilley K, Baeza-Yates R, Cambiazo V, Campos-Vargas R, González M, Meisel LA, Retamales J, Silva H, Orellana A (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genet 11:43–63

    Google Scholar 

  • Nohzadeh Malakshah S, Habibi Rezaei M, Heidari M, Salekdeh GH (2007) Proteomic reveals new salt responsive proteins associated with rice plasma membrane. Biosci Biotechnol Biochem 71:2144–2154

    Article  Google Scholar 

  • Osorio S, Alba R, Damasceno CMB, Lopez-Casado G, Lohse M, Zanor MI, Tohge T, Usadel B, Rose JKC, Fei Z, Giovannoni JJ, Fernie AR (2011) Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiol 157:405–425

    Article  CAS  Google Scholar 

  • Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB, Gruissem W, Vanderschuren H (2011) iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant J 67:145–156

    Article  CAS  Google Scholar 

  • Page D, Gouble B, Valot B, Bouchet JP, Callot C, Kretzschmar A, Causse M, Renard CMCG, Faurobert M (2010) Protective proteins are differentially expressed in tomato genotypes differing for their tolerance to low-temperature storage. Planta 232:483–500

    Article  CAS  Google Scholar 

  • Palma JM, Corpas FJ, del Río LA (2011) Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening. J Proteomics 74:1230–1243

    Article  CAS  Google Scholar 

  • Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A, Chakraborty S, Chakraborty N (2010) Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 9:3443–3464

    Article  CAS  Google Scholar 

  • Pedreschi R, Hertog M, Robben J, Noben J-P, Nicolaï B (2008) Physiological implications of controlled atmosphere storage of ‘Conference’ pears (Pyrus communis L.): a proteomic approach. Postharvest Biol Technol 50:110–116

    Article  CAS  Google Scholar 

  • Pedreschi R, Hertog M, Lilley KS, Nicolas B (2010) Proteomics for the food industry: opportunities and challenges. Crit Rev Food Sci Nutr 50:680–692

    Article  CAS  Google Scholar 

  • Perotti VE, del Vecchio HA, Sansevich A, Meier G, Bello F, Cocco M, Garrán SG, Anderson C, Vázquez D, Podestá FE (2011) Proteomic, metabolomic, and biochemical analysis of heat treated Valencia oranges during storage. Postharvest Biol Technol 62:97–114

    Article  CAS  Google Scholar 

  • Polenta GA, Calvete JJ, González CB (2007) Isolation and characterization of the main small heat shock proteins induced in tomato pericarp by thermal treatment. FEBS J 274:6447–6455

    Article  CAS  Google Scholar 

  • Prinsi B, Negri AS, Fedeli C, Morgutti S, Negrini N, Cocucci M, Espen L (2011) Peach fruit ripening: a proteomic comparative analysis of the mesocarp of two cultivars with different flesh firmness at two ripening stages. Phytochemistry 72:1251–1262

    Article  CAS  Google Scholar 

  • Renaut J, Lutts S, Hoffmann L, Hausman JF (2004) Responses of poplar to chilling temperatures: proteomic and physiological aspects. Plant Biol 6:81–90

    Article  CAS  Google Scholar 

  • Renaut J, Hausman JF, Wisniewski ME (2006) Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol Plant 126:97–109

    Article  CAS  Google Scholar 

  • Rocco M, D’Ambrosio C, Arena S, Faurobert M, Scaloni A, Marra M (2006) Proteomic analysis of tomato fruits from two ecotypes during ripening. Proteomics 6:3781–3791

    Article  CAS  Google Scholar 

  • Rossell JB, Wilson IW, Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130:1109–1120

    Article  Google Scholar 

  • Rugkong A, Rose JKC, Lee SJ, Giovannoni JJ, O’Neill MA, Watkins CB (2010) Cell wall metabolism in cold-stored tomato fruit. Postharvest Biol Technol 57:106–113

    Article  CAS  Google Scholar 

  • Salekdeh GH, Komatsu S (2007) Crop proteomics: aim at sustainable agriculture of tomorrow. Proteomics 7:2976–2996

    Article  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    Article  CAS  Google Scholar 

  • Sanchez T, Chavez AL, Ceballos H, Rodriguez-Amaya DB, Nestel P, Ishitani M (2006) Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. J Sci Food Agric 86:634–639

    Article  CAS  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198

    Article  CAS  Google Scholar 

  • Schuch W, Bird CR, Ray J, Smith CJS (1989) Control and manipulation of gene expression during tomato fruit ripening. Plant Mol Biol 13:303–311

    Article  CAS  Google Scholar 

  • Seymour G, Poole M, Manning K, King GJ (2008) Genetics and epigenetics of fruit development and ripening. Curr Opin Plant Biol 11:58–63

    Article  CAS  Google Scholar 

  • Shi JX, Chen S, Gollop N, Goren R, Goldschmidt EE, Porat R (2008) Effects of anaerobic stress on the proteome of citrus fruit. Plant Sci 175:478–486

    Article  CAS  Google Scholar 

  • Siddique MA, Grossmann J, Gruissem W, Baginsky S (2006) Proteome analysis of bell pepper (Capsicum annuum L.) chromoplasts. Plant Cell Physiol 47:1663–1673

    Article  CAS  Google Scholar 

  • Song J, Braun G (2008) Application of proteomic techniques to fruits and vegetables. Curr Proteomics 5:191–201

    Article  CAS  Google Scholar 

  • Sorrequieta A, Ferraro G, Boggio SB, Valle EM (2010) Free amino acid production during tomato fruit ripening: a focus on L-glutamate. Amino Acids 10:1523–1532

    Article  Google Scholar 

  • Takáč T, Pechan T, Šamaj J (2011) Differential proteomics of plant development. J Proteomics 74:577–588

    Article  Google Scholar 

  • Taylor NL, Heazlewood JL, Day DA, Millar AH (2005) Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 4:1122–1133

    Article  CAS  Google Scholar 

  • Tikunov Y, Lommen A, de Vos CHR, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137

    Article  CAS  Google Scholar 

  • Timperio AM, Egidi MG, Zolla L (2008) Proteomics applied on plant abiotic stresses: role of heat shock proteins (HSP). J Proteomics 71:391–411

    Article  CAS  Google Scholar 

  • Vogel JT, Tieman DM, Sims CA, Odabasi AZ, Clark DG, Klee HJ (2010) Carotenoid content impacts flavour acceptability in tomato (Solanum lycopersicum). J Sci Food Agric 90:2233–2240

    Article  CAS  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC, Su WA, Sun WN (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    CAS  Google Scholar 

  • Yang P, Chen H, Liang Y, Shen S (2007) Proteomic analysis of de-etiolated rice seedlings upon exposure to light. Proteomics 7:2459–2468

    Article  CAS  Google Scholar 

  • Yang Y, Qiang X, Owsiany K, Zhang S, Thannhauser TW, Li L (2011) Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. J Prot Res 10:4647–4660

    Article  CAS  Google Scholar 

  • Yun Z, Li W, Pan Z, Xu J, Cheng Y, Deng X (2010) Comparative proteomics analysis of differentially accumulated proteins in juice sacs of ponkan (Citrus reticulata) fruit during postharvest cold storage. Postharvest Biol Technol 56:189–201

    Article  CAS  Google Scholar 

  • Zanor MI, Rambla J-L, Chaib J, Steppa A, Medina A, Granell A, Fernie AR, Causse M (2009) Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. J Exp Bot 60:2139–2154

    Article  CAS  Google Scholar 

  • Zhang L, Yu Z, Jiang L, Jiang J, Luo H, Fu L (2011) Effect of post-harvest heat treatment on proteome change of peach fruit during ripening. J Proteomics 74:1139–1145

    Article  Google Scholar 

  • Zorb C, Betsche T, Lagenkamper G (2009) Search for diagnostic proteins to prove authenticity of organic wheat grains (Triticum aestivum L.). J Agric Food Chem 57:2932–2937

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Bramley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bramley, P.M. (2013). Fruits and Vegetables. In: Toldrá, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_18

Download citation

Publish with us

Policies and ethics