Skip to main content

Farmed and Wild Fish

  • Chapter
  • First Online:
Proteomics in Foods

Part of the book series: Food Microbiology and Food Safety ((RESDEV,volume 2))

Abstract

The living conditions and the many stimuli to which fish are exposed in captivity can differ significantly from those experienced in the wild, affecting the biology of fish and productivity of the farming plants. Being able to track and detect variations in protein expression against similar genetic backgrounds, proteomics holds considerable promise as a means for unveiling the perturbations induced by farming and for understanding the underlying physiological and/or pathological mechanisms, providing information that can be exploited for increasing zootechnical performance and quality, as well as for traceability and product identification purposes. In fact, the characterization of differential expression profiles in fish tissues can provide useful insights into many aspects of aquaculture, ranging from fish biology, welfare, health, and growth dynamics, to product quality, safety, authentication, traceability, and shelf-life.

This chapter provides an overview of the studies that have directly assessed the impact of farming on protein expression profiles of fish tissues. Biological questions, experimental designs, methods, results, and implications are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acerete L, Balasch JC, Espinosa E, Josa A, Tort L (2004) Physiological responses in Eurasian perch (Perca fluviatilis, L.) subjected to stress by transport and handling. Aquaculture 237:167–178

    Article  CAS  Google Scholar 

  • Addis MF, Cappuccinelli R, Tedde V, Pagnozzi D, Porcu MC, Bonaglini E, Roggio T, Uzzau S (2010a) Proteomic analysis of muscle tissue from gilthead sea bream (Sparus aurata, L.) farmed in offshore floating cages. Aquaculture 309:245–252

    Article  CAS  Google Scholar 

  • Addis MF, Cappuccinelli R, Tedde V, Pagnozzi D, Viale I, Meloni M, Salati F, Roggio T, Uzzau S (2010b) Influence of Moraxella sp. colonization on the kidney proteome of farmed gilthead sea breams (Sparus aurata, L.). Proteome Sci 8:50

    Google Scholar 

  • Agulleiro MJ, Anguis V, Cañavate JP, Martínez-Rodríguez G, Mylonas CC, Cerdà J (2006) Induction of spawning of captive-reared Senegal sole (Solea senegalensis) using different administration methods for gonadotropin-releasing hormone agonist. Aquaculture 257:511–524

    Article  CAS  Google Scholar 

  • Alarcon JA, Magoulas A, Georgakopoulos T, Zouros E, Alvarez MC (2004) Genetic comparison of wild and cultivated European populations of the gilthead sea bream (Sparus aurata). Aquaculture 230:65–80

    Article  CAS  Google Scholar 

  • Ali KS, Dorgai L, Ábrahám M, Hermesz E (2003) Tissue- and stressor-specific differential ­expression of two hsc70 genes in carp. Biochem Biophys Res Commun 307:503–509

    Article  CAS  Google Scholar 

  • Alves RN, Cordeiro O, Silva T, Richard N, De Vareilles M, Marino G, Di Marco P, Rodrigues PM, Conceição LEC (2010) Metabolic molecular indicators of chronic stress in gilthead seabream (Sparus aurata) using comparative proteomics. Aquaculture 299:57–66

    Article  CAS  Google Scholar 

  • Anguis V, Cañavate JP (2005) Spawning of captive Senegal sole (Solea senegalensis) under a ­naturally fluctuating temperature regime. Aquaculture 243:133–145

    Article  Google Scholar 

  • Basu N, Nakano T, Grau EG, Iwama GK (2001) The effects of cortisol on heat shock protein 70 levels in two fish species. Gen Comp Endocrinol 124:97–105

    Article  CAS  Google Scholar 

  • Biron M, Benfey TJ (1994) Cortisol, glucose and hematocrit changes during acute stress, cohort sampling, and the diel cycle in diploid and triploid brook trout (Salvelinus fontinalis Mitchell). Fish Phys Biochem 13:153–160

    Article  CAS  Google Scholar 

  • Blanchet S, Páez DJ, Bernatchez L, Dodson JJ (2008) An integrated comparison of captive-bred and wild Atlantic salmon (Salmo salar): implications for supportive breeding programs. Biol Conserv 141:1989–1999

    Article  Google Scholar 

  • Bone Q, Marshall NB, Blaxter JHS (1996) Biology of fishes, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Boone AN, Vijayan MM (2002) Constitutive heat shock protein 70 (HSC 70) expression in rainbow trout hepatocytes: effect of heat shock and heavymetal exposure. Comp Biochem Physiol C 132:223–233

    Google Scholar 

  • Cabrita E, Soares F, Dinis MT (2006) Characterization of Senegal sole, Solea senegalensis, male broodstock in terms of sperm production and quality. Aquaculture 261:967–975

    Article  Google Scholar 

  • Carpené E, Martin B, Dalla LL (1998) Biochemical differences in lateral muscle of wild and farmed gilthead sea bream (Sparus aurata L.). Fish Physiol Biochem 19:229–238

    Article  Google Scholar 

  • Concha MI, Molina S, Oyarzun C, Villanueave J, Amthauer R (2003) Local expression of apolipoprotein A-1 gene and a possible role for HDL in primary defence in the carp skin. Fish Shellfish Immunol 14:259–273

    Article  CAS  Google Scholar 

  • Cooper M, Midling K (2007) Blood vessel melanosis: a physiological detoxication mechanism in Atlantic cod (Gadus morhua). Aquacult Int 15:43–54

    Article  CAS  Google Scholar 

  • Douxfils J, Mathieu C, Mandiki SNM, Milla S, Henrotte E, Wang N, Vandecan M, Dieu M, Dauchot N, Pigneur LM, Li X, Rougeot C, Mélard C, Silvestre F, Van Doninck K, Raes M, Kestemont P (2011) Physiological and proteomic evidences that domestication process differentially modulates the immune status of juvenile Eurasian perch (Perca fluviatilis) under chronic confinement stress. Fish Shellfish Immunol 31:1113–1121

    Article  CAS  Google Scholar 

  • Driscoll CA, MacDonald DW, O’Brien SJ (2009) From wild animals to domestic pets, an evolutionary view of domestication. From the Academy. In: The light of evolution III: two centuries of Darwin Sackler Colloquium, vol 106. PNAS 9971–78

    Google Scholar 

  • Forné I, Agulleiro MJ, Asensio E, Abián J, Cerdà J (2009) 2-D DIGE analysis of Senegalese sole (Solea senegalensis) testis proteome in wild-caught and hormone-treated F1 fish. Proteomics 9:2171–2181

    Article  Google Scholar 

  • Forné I, Abián J, Cerdà J (2010) Fish proteome analysis: model organisms and non-sequenced species. Proteomics 10:858–872

    Article  Google Scholar 

  • Gazzana G, Borlak J (2009) An update on the mouse liver proteome. Proteome Sci 7:35

    Article  Google Scholar 

  • Gómez-Requeni P, Mingarro M, Calduch-Giner JA, Médale F, Martin SAM, Houlihan DF, Kaushik S, Pérez-Sánchez J (2004) Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 232:493–510

    Article  Google Scholar 

  • Gornati R, Terova G, Vigetti D, Prati M, Saroglia M, Bernardini G (2004a) Effects of population density on sea bass (Dicentrarchus labrax) gene expression. Aquaculture 230:229–239

    Article  Google Scholar 

  • Gornati R, Papis E, Rimoldi S, Terova G, Saroglia M, Bernardini G (2004b) Rearing density influences the expression of stress-related genes in sea bass (Dicentrarchus labrax, L.). Gene 341:111–118

    Article  CAS  Google Scholar 

  • Hall TE, Cole NJ, Johnston IA (2003) Temperature and the expression of seven muscle-specific protein genes during embryogenesis in the Atlantic cod Gadus morhua L. J Exp Biol 206:3187–3200

    Article  CAS  Google Scholar 

  • He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fibre in type 2 diabetes and obesity. Diabetes 50:817–823

    Article  CAS  Google Scholar 

  • Hopkins TE, Wood CM, Walsh PJ (1995) Interactions of cortisol and nitrogen metabolism in the ureogenic gulf toadfish Opsanus beta. J Exp Biol 198:2229–2235

    CAS  Google Scholar 

  • Ibarz A, Martín-Pérez M, Blasco J, Bellido D, de Oliveira E, Fernández-Borràs J (2012) Gilthead sea bream liver proteome altered at low temperatures by oxidative stress. Proteomics 10:963–975

    Google Scholar 

  • Jackson TR, Martin-Robichaud DJ, Reith ME (2003) Application of DNA markers to the management of Atlantic halibut (Hippoglossus hippoglossus) broodstock. Aquaculture 220:245–259

    Article  CAS  Google Scholar 

  • Johnston IA (1999) Muscle development and growth: potential implications for flesh quality in fish. Aquaculture 177:99–115

    Article  Google Scholar 

  • Johnston IA, Moon TW (1980) Endurance exercise training in the fast and slow muscles of a teleost fish (Pollachius Virens). J Comp Physiol 135:147–156

    CAS  Google Scholar 

  • Johnston IA, Cole NJ, Abercromby M, Vieira VLA (1998) Embryonic temperature modulates muscle growth characteristics in larval and juvenile herring Clupea harengus. J Exp Biol 201:623–646

    Google Scholar 

  • Kiessling A, Storebakken T, Åsgård T, Kiessling KH (1991) Changes in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykiss) in relation to ration and age: I. Growth dynamics. Aquaculture 93:335–356

    Article  Google Scholar 

  • Koljonen ML, Tähtinen J, Säisä M, Koskiniemi J (2002) Maintenance of genetic diversity of Atlantic salmon (Salmo salar) by captive breeding programmes and the geographic distribution of microsatellite variation. Aquaculture 212:69–92

    Article  CAS  Google Scholar 

  • Martin SAM, Cash P, Blaney S, Houlihan DF (2001) Proteome analysis of rainbow trout (Oncorhynchus mykiss) liver proteins during short term starvation. Fish Physiol Biochem 24:259–270

    Article  CAS  Google Scholar 

  • Martin SAM, Vilhelmsson O, Médale F, Watt P, Kaushik S, Houlihan DF (2003) Proteomic sensitivity to dietary manipulations in rainbow trout. Biochim Biophys Acta 1651:17–29

    Article  CAS  Google Scholar 

  • Martinez I, Pettersen GW (1992) Temperature-induced precocious transitions of myosin heavy chain isoforms in the white muscle of the Arctic charr (Salvelinus alpinus). Bas Appl Myol 2:89–95

    Google Scholar 

  • Martinez I, Dreyer B, Agersborg A, Leroux A, Boeuf G (1995) Effects of T3 and rearing temperature on growth and skeletal myosin heavy chain isoform transition during early development in the salmonid Salvelinus alpinus (L.). Comp Biochem Physiol Part B Biochem Mol Biol 122:717–725

    Article  Google Scholar 

  • Martinez I, Šližytė R, Daukšas E (2007) High resolution two-dimensional electrophoresis as a tool to differentiate wild from farmed cod (Gadus morhua) and to assess the protein composition of klipfish. Food Chem 102:504–510

    Article  CAS  Google Scholar 

  • Melamed P, Zhiyuan G, Hew CL, Fletcher G (2002) The potential impact of modern biotechnology on fish aquaculture. Aquaculture 204:255–269

    Article  CAS  Google Scholar 

  • Mignon-Grasteau S, Boissy A, Bouix J, Faure JM, Fisher AD, Hinch GN, Jensen P, Le Neindre P, Mormède P, Prunet P, Vandeputte M, Beaumont C (2005) Genetics of adaptation and domestication in livestock. Livestock Prod Sci 93:3–14

    Article  Google Scholar 

  • Miura T, Miura C, Ohta T, Nader MR, Todo T, Yamauchi K (1999) Estradiol-17b stimulates the renewal of spermatogonial stem cells in males. Biochem Biophys Res Comm 264:230–234

    Article  CAS  Google Scholar 

  • Montero D, Izquierdo MS, Tort L, Robaina L, Vergara JM (1999) High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiol Biochem 20:53–60

    Article  CAS  Google Scholar 

  • Monti G, De Napoli L, Mainolfi P, Barone R, Guida M, Marino G, Amoresano A (2005) Monitoring food quality by microfluidic electrophoresis, gas chromatography, and mass spectrometry techniques: effects of aquaculture on the sea bass (Dicentrarchus labrax). Anal Chem 77:2587–2594

    Article  CAS  Google Scholar 

  • Moyle PB, Cech JJ (1996) Fishes – an introduction to ichtyology, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Nash CE (2011) The history of aquaculture. Wiley-Blackwell, Ames

    Book  Google Scholar 

  • Ofstad R, Egelandsdal B, Kidman S, Myklebust R, Olsen R, Hermanssona AM (1996) Liquid loss as effected by post mortem ultrastructural changes in fish muscle: cod (Gadus morhua L) and salmon (Salmo salar). J Sci Food Agric 71:301–312

    Article  CAS  Google Scholar 

  • Olsson GB, Friis TJ, Jensen E, Cooper M (2007) Metabolic disorders in muscle of farmed Atlantic cod (Gadus morhua). Aquacult Res 38:1223–1227

    Article  Google Scholar 

  • Olsson GB, Olsen RL, Ofstad R (2003) Post mortem structural characteristics and water-holding capacity in Atlantic halibut muscle. LWT- Food Sci Technol 36:125–133

    Article  CAS  Google Scholar 

  • Palmfeldt J, Vang S, Stenbroen V, Pedersen CB, Christensen JH, Bross P, Gregersen N (2009) Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress. Proteome Sci 28:7–20

    Google Scholar 

  • Pampoulie C, Jörundsdóttir TD, Steinarsson A, Pétursdóttir G, Stefánsson MO, Daníelsdóttir AK (2006) Genetic comparison of experimental farmed strains and wild Icelandic populations of Atlantic cod (Gadus morhua L.). Aquaculture 261:556–564

    Article  CAS  Google Scholar 

  • Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142

    Article  CAS  Google Scholar 

  • Piñeiro C, Barros-Velázquez J, Vázquez J, Figueras A, Gallardo JM (2003) Proteomics as a tool for the investigation of seafood and other marine products. J Proteome Res 2:127–135

    Article  Google Scholar 

  • Poltronieri C, Maccatrozzo L, Simontacchi C, Bertotto D, Funkenstein B, Patruno M, Radaelli G (2007) Quantitative RT-PCR analysis and immunohistochemical localization of HSP70 in sea bass Dicentrarchus labrax exposed to transport stress. Eur J Histochem 51:125–136

    CAS  Google Scholar 

  • Porta J, Porta JM, Martínez-Rodríguez G, Carmen AM (2006) Genetic structure and genetic relatedness of a hatchery stock of Senegal sole (Solea senegalensis) inferred by microsatellites. Aquaculture 251:46–55

    Article  CAS  Google Scholar 

  • Price EO (1999) Behavioral development in animals undergoing domestication. Appl Anim Behav Sci 65:245–271

    Article  Google Scholar 

  • Rabilloud T, Strub JM, Luche S, Girardet JL, van Dorsselaer A, Lunardi J (2000) Ruthenium II tris (bathophenanthroline disulfonate), a powerful fluorescent stain for detection of proteins in gel with minimal interference in subsequent mass spectrometry analysis. Proteome 1:1–14

    Article  Google Scholar 

  • Randall D, Burggren W, French K, Fernald R (1997) Eckert – animal physiology – mechanisms and adaptations. W.H. Freeman, New York

    Google Scholar 

  • Reddish JM, St-Pierre N, Nichols A, Green-Church K, Wick M (2008) Proteomic analysis of proteins associated with body mass and length in yellow perch, Perca flavescens. Proteomics 8:2333–2343

    Article  CAS  Google Scholar 

  • Roche H, Bogé G (1996) Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Mar Environ Res 41:27–43

    Article  CAS  Google Scholar 

  • Stafford JL, Belosevic M (2003) Transferrin and the innate immune response of fish: identification of a novel mechanism of macrophage activation. Dev Comp Immunol 27:539–554

    Article  CAS  Google Scholar 

  • Stafford JL, Wilson EC, Belosevic M (2004) Recombinant transferrin induces nitric oxide response in goldfish and murine macrophages. Fish Shellfish Immunol 17:171–185

    Article  CAS  Google Scholar 

  • Totland GK, Kryvi H, Jødestol KA, Christiansen EN, Tangeras A, Slinde E (1987) Growth and composition of the swimming muscle of adult Atlantic salmon Salmo salar L. during long-term sustained swimming. Aquaculture 66:299–313

    Article  Google Scholar 

  • Vats P, Mukherjee AK, Kumria MML, Singh SN, Patil SKB, Rangnathan S, Sridharan K (1999) Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress. Int J Biometeorol 42:205–209

    Article  CAS  Google Scholar 

  • Vogel H (2001) Mitochondrial myopathies and the role of the pathologist in the molecular era. J Neuropathol Exp Neurol 60:217–227

    CAS  Google Scholar 

  • Westermeier R, Naven T, Höpker H (2008) Proteomics in practice: a guide to successful experimental design, 2nd edn. Wiley-VCH, Federal Republic of Germany

    Google Scholar 

  • Withler RE, Rundle T, Beacham TD (2007) Genetic identification of wild and domesticated strains of chinook salmon (Oncorhynchus tshawytscha) in southern British Columbia, Canada. Aquaculture 272:S161–S171

    Article  Google Scholar 

  • Zhou M, Conrads TP, Veenstra TD (2005) Proteomics approaches to biomarker detection. Brief Funct Genomic Proteomic 4:69–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Daniela Pagnozzi for the useful discussions on proteomic methods and techniques and for critical reading of the manuscript, and Stefania Ghisaura, Vittorio Tedde, and Grazia Biosa for their help with the 2-D-PAGE maps and MS identifications. The support of Prof. Sergio Uzzau and Dr. Tonina Roggio is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Filippa Addis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Addis, M.F. (2013). Farmed and Wild Fish. In: Toldrá, F., Nollet, L. (eds) Proteomics in Foods. Food Microbiology and Food Safety, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5626-1_11

Download citation

Publish with us

Policies and ethics