Derivatives of Inner Functions pp 145-155 | Cite as
Bp-Means of B′
Chapter
First Online:
- 778 Downloads
Abstract
According to Theorem 6.1, we have for any Blaschke product B. Compare this result with Theorem 7.12. There is a Blaschke product B such that \(B{\prime}\not\in {B}^{\frac{1} {2} }(\mathbb{D})\). Hence, (9.1) is sharp and the Blaschke condition alone is not enough to conclude further results. Thus, we need to consider the Blaschke sequences which satisfy a stronger growth condition. Two such results are treated below.
$$B{\prime} \in {\bigcap \nolimits }_{0<p<\frac{1} {2} }{B}^{p}(\mathbb{D})$$
(9.1)
Keywords
Blaschke Product Stronger Growth Condition Blaschke Sequence Complex Variables Space Analysis
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.Ahern P (1979) On a theorem of Hayman concerning the derivative of a function of bounded characteristic. Pacific J Math 83(2):297–301MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Ahern P, Clark D (1971) Radial nth derivatives of Blaschke products. Math Scand 28:189–201MathSciNetzbMATHGoogle Scholar
- 3.Ahern P, Clark D (1974) On inner functions with H p-derivative. Michigan Math J 21:115–127MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Ahern P, Clark D (1976) On inner functions with B p derivative. Michigan Math J 23(2):107–118MathSciNetzbMATHCrossRefGoogle Scholar
- 5.Allen H, Belna C (1972) Singular inner functions with derivative in B p. Michigan Math J 19:185–188MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Belna C, Muckenhoupt B (1977) The derivative of the atomic function is not in B 2 ∕ 3. Proc Am Math Soc 63(1):129–130MathSciNetGoogle Scholar
- 7.Belna C, Colwell P, Piranian G (1985) The radial behavior of Blaschke products. Proc Amer Math Soc 93(2):267–271MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Beurling A (1948) On two problems concerning linear transformations in Hilbert space. Acta Math 81:239–255CrossRefGoogle Scholar
- 9.Blaschke W (1915) Eine erweiterung des satzes von vitali über folgen analytischer funktionen. Leipzig Ber 67:194–200Google Scholar
- 10.Bourgain J (1993) On the radial variation of bounded analytic functions on the disc. Duke Math J 69(3):671–682MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Carathéodory C (1929) Über die winkelderivierten von beschränkten analytischen funktionen. Sitzunber Preuss Akad Wiss 32:39–52Google Scholar
- 12.Cargo G (1961) The radial images of Blaschke products. J London Math Soc 36: 424–430MathSciNetzbMATHCrossRefGoogle Scholar
- 13.Caughran J, Shields A (1969) Singular inner factors of analytic functions. Michigan Math J 16:409–410MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Cohn W (1983) On the H p classes of derivatives of functions orthogonal to invariant subspaces. Michigan Math J 30(2):221–229MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Collingwood EF, Lohwater AJ (1966) The theory of cluster sets. Cambridge tracts in mathematics and mathematical physics, No 56. Cambridge University Press, CambridgeGoogle Scholar
- 16.Colwell P (1985) Blaschke products. University of Michigan Press, Ann Arbor. Bounded analytic functionsGoogle Scholar
- 17.Cullen M (1971) Derivatives of singular inner functions. Michigan Math J 18:283–287MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Duren P, Schuster A (2004) Bergman spaces, volume 100 of mathematical surveys and monographs. American Mathematical Society, ProvidenceGoogle Scholar
- 19.Duren P, Romberg B, Shields A (1969) Linear functionals on H p spaces with 0 < p < 1. J Reine Angew Math 238:32–60MathSciNetzbMATHGoogle Scholar
- 20.Fatou P (1906) Séries trigonométriques et séries de Taylor. Acta Math 30(1):335–400MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Fricain E, Mashreghi J (2008) Integral means of the derivatives of Blaschke products. Glasg Math J 50(2):233–249MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Frostman O (1935) Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Meddel Lund Univ Mat Sem 3Google Scholar
- 23.Frostman O (1942) Sur les produits de Blaschke. Kungl. Fysiografiska Sällskapets i Lund Förhandlingar [Proc Roy Physiog Soc Lund] 12(15):169–182Google Scholar
- 24.Girela D, Peláez J, Vukotić D (2007) Integrability of the derivative of a Blaschke product. Proc Edinb Math Soc (2), 50(3):673–687Google Scholar
- 25.Hardy G, Littlewood J (1932) Some properties of fractional integrals. II. Math Z 34(1):403–439MathSciNetCrossRefGoogle Scholar
- 26.Hedenmalm H, Korenblum B, Zhu K (2000) Theory of Bergman spaces, volume 199 of graduate texts in mathematics. Springer, New YorkCrossRefGoogle Scholar
- 27.Heins M (1951) A residue theorem for finite Blaschke products. Proc Amer Math Soc 2:622–624MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Herglotz G (1911) Über potenzreihen mit positivem, reellen teil in einheitskreis. S-B Sächs Akad Wiss Leipzig Math-Natur Kl 63:501–511Google Scholar
- 29.Julia G (1920) Extension nouvelle d’un lemme de Schwarz. Acta Math 42(1):349–355MathSciNetCrossRefGoogle Scholar
- 30.Linden C (1976) H p-derivatives of Blaschke products. Michigan Math J 23(1):43–51MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Lucas F (1874) Propriétés géométriques des fractionnes rationnelles. CR Acad Sci Paris 77:631–633Google Scholar
- 32.Mashreghi J (2002) Expanding a finite Blaschke product. Complex Var Theory Appl 47(3):255–258MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Mashreghi J (2009) Representation theorems in Hardy spaces, volume 74 of london mathematical society student texts. Cambridge University Press, CambridgeGoogle Scholar
- 34.Mashreghi J, Shabankhah M (2009) Integral means of the logarithmic derivative of Blaschke products. Comput Methods Funct Theory 9(2):421–433MathSciNetzbMATHGoogle Scholar
- 35.Nevanlinna R (1929) Über beschränkte analytische funcktionen. Ann Acad Sci Fennicae A 32(7):1–75Google Scholar
- 36.Plessner A (1923) Zur theorie der konjugierten trigonometrischen reihen. Mitt Math Sem Giessen 10:1–36Google Scholar
- 37.Privalov I (1918) Intégral de cauchy. Bulletin de l’Université, à SaratovGoogle Scholar
- 38.Privalov I (1924) Sur certaines propriétés métriques des fonctions analytiques. J de l’École Polytech 24:77–112Google Scholar
- 39.Protas D (1973) Blaschke products with derivative in H p and B p. Michigan Math J 20:393–396MathSciNetzbMATHGoogle Scholar
- 40.Riesz F (1923) Über die Randwerte einer analytischen Funktion. Math Z 18(1):87–95MathSciNetzbMATHCrossRefGoogle Scholar
- 41.Riesz M (1931) Sur certaines inégalités dans la théorie des fonctions avec quelques remarques sur les géometries non-euclidiennes. Kungl Fysiogr Sällsk i Lund 1(4): 18–38MathSciNetGoogle Scholar
- 42.Rudin W (1955) The radial variation of analytic functions. Duke Math J 22:235–242MathSciNetzbMATHCrossRefGoogle Scholar
- 43.Seidel W (1934) On the distribution of values of bounded analytic functions. Trans Am Math Soc 36(1):201–226MathSciNetCrossRefGoogle Scholar
- 44.Tsuji M (1959) Potential theory in modern function theory. Maruzen, TokyozbMATHGoogle Scholar
- 45.Vukotić D (2003) The isoperimetric inequality and a theorem of Hardy and Littlewood. Am Math Mon 110(6):532–536zbMATHCrossRefGoogle Scholar
- 46.Walsh JL (1939) Note on the location of zeros of the derivative of a rational function whose zeros and poles are symmetric in a circle. Bull Am Math Soc 45(6):462–470CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 2013