Skip to main content

Face Recognition in Unconstrained Environment

  • Chapter
  • First Online:
Biometrics and Kansei Engineering

Abstract

This chapter addresses the problem of face recognition from images with lighting problems such as shadows or brightness level. Authors describe face recognition processing, including major components such as face detection, tracking, alignment, and feature extraction. Technical challenges of building a face recognition system are pointed out. The chapter emphasizes the importance of subspace analysis and learning, providing not only an understanding of the challenges therein but also the most successful solutions developed to date. In the following sections, authors present brief history of face recognition systems, show problems that affect results of these systems, and present their own approach based on finding fiducial points in face image and their further use for face recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hietmeyer R (2000) Biometric identification promises fast and secure processing of airline passengers. Int Civ Aviat Organ J 55(9):10–11

    Google Scholar 

  2. Machine Readable Travel Documents (MRTD). http://www.icao.int/Security/mrtd/Pages/default.aspx. Accessed 23 May 2012

  3. Kanade T (1973) Picture processing by computer complex and recognition of human faces. Ph.D. thesis, Kyoto University

    Google Scholar 

  4. Kohonen T (1989) Self-organization and associative memory. Springer, Berlin

    Book  Google Scholar 

  5. Kirby M, Sirovich L (1990) Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Pattern Anal Mach Intell 12(1):103–108

    Article  Google Scholar 

  6. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cog Neurosci 3(1):71–86

    Article  Google Scholar 

  7. Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic, Boston

    MATH  Google Scholar 

  8. Sirovich L, Kirby M (1987) Low-dimensional procedure for the characterization of human faces. J Opt Soc Am A 4(3):519–524

    Article  Google Scholar 

  9. Bichsel M, Pentland A (1994) Human face recognition and the face image set’s topology. CVGIP Image Understand 59:254–261

    Article  Google Scholar 

  10. Turk M (2001) A random walk through eigenspace. IEICE Trans Inf Syst E84-D(12):1586–1695

    Google Scholar 

  11. Face Recognition Vendor Tests (FRVT). http://www.nist.gov/itl/iad/ig/frvt-home.cfm. Accessed 25 May 2012

  12. Phillips PJ, Moon H, Rizvi SA, Rauss PJ (2000) The FERET evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  13. Chellappa R, Wilson C, Sirohey S (1995) Human and machine recognition of faces: a survey. Proc IEEE 83:705–740

    Article  Google Scholar 

  14. Valentin D, Abdi H, O’Toole AJ, Cottrell GW (1994) Connectionist models of face processing: a survey. Pattern Recogn 27(9):1209–1230

    Article  Google Scholar 

  15. Zhao W, Chellappa R, Phillips P, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458. doi:10.1145/954339.954342

    Article  Google Scholar 

  16. Caltech database. http://www.vision.caltech.edu. Accessed 10 Dec 2011

  17. Moses Y, Adini Y, Ullman S (1994) Face recognition: the problem of compensating for changes in illumination direction. In: Proceedings of the European conference on computer vision, Stockholm, Sweden, vol A, pp 286–296

    Google Scholar 

  18. Sirovich L, Kirby M (1987) Low-dimensional procedure for the characterization of human faces. J Opt Soc Am A 4(3):519–524

    Article  Google Scholar 

  19. Bartlett MS, Lades HM, Sejnowski TJ (1998) Independent component representations for face recognition. In: Proceedings of the SPIE, conference on human vision and electronic imaging III, San Jose, California, USA, vol 3299, pp 528–539

    Google Scholar 

  20. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  21. Brunelli R, Poggio T (1993) Face recognition: features versus templates. IEEE Trans Pattern Anal Mach Intell 15(10):1042–1052

    Article  Google Scholar 

  22. Goldstein AJ, Harmon LD, Lesk AB (1971) Identification of human faces. Proc IEEE 59(5):748–760

    Article  Google Scholar 

  23. Kanade T (1973) Picture processing by computer complex and recognition of human faces. Ph.D. thesis, Kyoto University

    Google Scholar 

  24. Samal A, Iyengar PA (1992) Automatic recognition and analysis of human faces and facial expressions: a survey. Pattern Recogn 25:65–77

    Article  Google Scholar 

  25. Cox IJ, Ghosn J, Yianilos P (1996) Feature-based face recognition using mixture-distance. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, San Francisco, USA, pp 209–216

    Google Scholar 

  26. Scholkopf B, Smola A, Muller KR (1999) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10:1299–1319

    Article  Google Scholar 

  27. Mika S, Ratsch G, Weston J, Scholkopf B, Mller KR (1999) Fisher discriminant analysis with kernels. Neural Netw Signal Process IX:41–48

    Google Scholar 

  28. Guo GD, Li SZ, Chan KL (2000) Face recognition by support vector machines. In: Proceedings of fourth IEEE international conference on automatic face and gesture recognition, Grenoble, France, pp 196–201

    Google Scholar 

  29. Li Y, Gong S, Liddell H (2001) Recognising trajectories of facial identities using kernel discriminant analysis. In: Proceedings of British machine vision conference, Manchester, UK, pp 613–622

    Google Scholar 

  30. Moghaddam B (1999) Principal manifolds and Bayesian subspaces for visual recognition. In: International conference on computer vision (ICCV’99), Corfu, Greece, pp 1131–1136

    Google Scholar 

  31. Yang MH, Ahuja N, Kriegman D (2000) Face recognition using kernel eigenfaces. In: Proceedings of the IEEE international conference on image processing, Vancouver, BC, Canada, vol 1, pp 37–40

    Google Scholar 

  32. Penev P, Atick J (1996) Local feature analysis: a general statistical theory for object representation. Neural Syst 7(3):477–500

    Article  MATH  Google Scholar 

  33. Lades M, Vorbruggen J, Buhmann J, Lange J, Malsburg C, Wurtz RP, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42:300–311

    Article  Google Scholar 

  34. Wiskott L, Fellous J, Kruger N, Malsburg C (1997) Face recognition by elastic bunch graph matching. IEEE Trans Pattern Anal Mach Intell 19(7):775–779

    Article  Google Scholar 

  35. Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11(4):467–476

    Article  Google Scholar 

  36. Ahonen T, Hadid A, Pietikainen M (2004) Face recognition with local binary patterns. In: Proceedings of the European conference on computer vision, Prague, Czech, pp 469–481

    Google Scholar 

  37. Gordon GG, Lewis ME (1995) Face recognition using video clips and mug shots. In: Proceedings of office of national drug control policy (ONDCP) international technical symposium, Nashua, NH

    Google Scholar 

  38. Lengagne R, Tarel JP, Monga O (1996) From 2d images to 3d face geometry. In: Proceedings of IEEE international conference automatic face and gesture recognition, Killington, USA, pp 301–306

    Google Scholar 

  39. Atick JJ, Griffin PA, Redlich AN (1996) Statistical approach to shape from shading: reconstruction of 3Dface surfaces from single 2Dimages. Neural Comput 8(6):1321–1340

    Article  Google Scholar 

  40. Yan Y, Zhang J (1998) Rotation-invariant 3D recognition for face recognition. In: Proceedings of IEEE international conference image processing, Prague, Czech, vol 1, pp 156–160

    Google Scholar 

  41. Zhao WY, Chellappa R (2000) 3D model enhanced face recognition. In: Proceedings of IEEE international conference on image processing, Nashua, NH

    Google Scholar 

  42. Yang P, Shan S, Gao W, Li SZ, Zhang D (2004) Face recognition using ada-boosted gabor features. In: Proceedings of international conference on automatic face and gesture recognition, Killington, USA

    Google Scholar 

  43. Zhang G, Huang X, Li SZ, Wang Y (2004) Boosting local binary pattern (LBP)-based face recognition. In: Li SZ, Lai J, Tan T, Feng G, Wang Y (eds) Advances in biometric personal authentication, vol 3338, Lecture notes in computer science. Springer, Berlin, pp 180–187

    Google Scholar 

  44. Zhang L, Li SZ, Qu Z, Huang X (2004) Boosting local feature based classifiers for face recognition. In: Proceedings of first IEEE workshop on face processing in video, Washington, DC

    Google Scholar 

  45. Chen W, Er M, Wu S (2005) PCA and LDA in DCT domain. Pattern Recogn Lett 26:2474–2482

    Article  Google Scholar 

  46. Chen W, Meng JE, Shiqian W (2006) Illumination compensation and normalization for robust face recognition using discrete cosine transform in logarithm domain. IEEE Trans Syst Man Cybern B: Cybern 36(2):458–466

    Article  Google Scholar 

  47. Tan X, Triggs B (2007) Preprocessing and feature sets for robust face recognition. In: IEEE conference on computer vision and pattern recognition, CVPR ’07, Minneapolis, Minnesota, USA, pp 1–8

    Google Scholar 

  48. Xie X, Zheng W, Lai J, Yuen PC (2008) Face illumination normalization on large and small scale features. In: IEEE conference on computer vision and pattern recognition, CVPR ’08, Anchorage, AK, USA, pp 1–8

    Google Scholar 

  49. Abbas A, Khalil MI, Abdel HS, Fahmy HMA (2009) Illumination invariant face recognition in logarithm discrete cosine transform domain. IEEE ICIP’2009, Cairo, Egypt, pp 4157–4160

    Google Scholar 

  50. Shao M, Wang Y (2009) Joint features for face recognition under variable illuminations. In: Fifth international conference on image and graphics, ICIG’09, Xi’an, Shanxi, China, pp 922–927

    Google Scholar 

  51. Liau HF, Isa D (2010) New illumination compensation method for face recognition. Int J Comput Netw Secur 2(3):308–321

    Google Scholar 

  52. Han H, Shan S, Qing L, Chen X, Gao W (2010) Lighting aware preprocessing for face recognition across varying illumination. LNCS 6312/ECCV 2010, Crete, Greece, pp 308–321

    Google Scholar 

  53. Goel T, Nehra V, Vishwakarma VP (2010) Comparative analysis of various illumination normalization techniques for face recognition. Int J Comput Appl 28(9):1–7

    Google Scholar 

  54. Saeed K (2004) Image analysis for object recognition. Bialystok Technical University Press, Bialystok

    Google Scholar 

  55. Kocjan P, Saeed K (2011) A feature based algorithm for face image description. In: Proceedings of IEEE-ICBAKE, IEEE CS Press–CD, Takamatsu, 19–21 Sep 2011, Japan, pp 175–178

    Google Scholar 

  56. Kocjan P, Saeed K (2011) Algorithm for extraction feature points from human face and their use in Toeplitz matrices. Faculty of Biomedical Engineering, Silesian University of Technology, Gliwice

    Google Scholar 

  57. Gao Y, Leung MKH (2002) Face recognition using line edge map. IEEE Trans Pattern Anal Mach Intell 24(6):764–779

    Article  Google Scholar 

  58. Ivanevic V, Kaine AK, Mclindin BA, Sunde J (2003) Factor analysis of essential facial features. In: 25th international conference on information technology interfaces, Cavtat, Croatia, pp 187–191

    Google Scholar 

  59. Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. In: Computer vision – ECCV’98, Freiburg, Germany, vol 2, pp 484–498

    Google Scholar 

  60. Huang CL, Huang YM (1997) Facial expression recognition using model-based feature extraction and action parameters classification. J Vis Commun Image Represent 8:278–290

    Article  Google Scholar 

  61. Kobayashi H, Hara F (1992) Recognition of six basic facial expression and their strength by neural network. In: IEEE international workshop on robot and human communication, Tokyo, Japan, pp 381–386

    Google Scholar 

  62. Pantic M, Rothkrantz LJM (2004) Facial action recognition for facial expression analysis from static face images. IEEE Trans Syst Man Cybern 34(3):1449–1461

    Article  Google Scholar 

  63. Valstar M, Pantic M (2006) Fully automatic facial action unit detection and temporal analysis. In: Proceedings of the 2006 conference on computer vision and pattern recognition workshop (CVPRW’06) NY, USA

    Google Scholar 

  64. Cohn JF, Zlochower AJ, Lien JJ, Kanade T (1998) Feature-point tracking by optical flow discriminates subtle differences in facial expression. In: Proceedings of third IEEE FG, Nara, Japan, pp 396–401

    Google Scholar 

  65. Zhang Z, Lyons M, Schuster M, Akamatsu S (1998) Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron. In: Proceedings of third IEEE FG, Nara, Japan, pp 354–459

    Google Scholar 

  66. Cohn J, Zlochower A, Lien JJ, Kanade T (1999) Automated face analysis by feature point tracking has high concurrent validity with manual FACS coding. Psychophysiology 36:35–43

    Article  Google Scholar 

  67. Tian YI, Kanade T, Cohn JF (2001) Recognizing action units for facial expression analysis. IEEE Trans Pattern Anal Mach Intell 23:97–115

    Article  Google Scholar 

  68. Donato G, Bartelett MS, Hager JC, Ekman P, Sejnowski TJ (1999) Classifying facial actions. IEEE Trans Pattern Anal Mach Intell 21:974–989

    Article  Google Scholar 

  69. Essa IA, Pentland AP (1997) Coding, analysis, interpretation, and recognition of facial expressions. IEEE Trans Pattern Anal Mach Intell 19:757–763

    Article  Google Scholar 

  70. Fasel B, Luettin J (2002) Automatic facial expression analysis: a survey. Pattern Recogn 36:259–275

    Article  Google Scholar 

  71. Pantic M, Rothkrantz LJM (2000) Expert system for automatic analysis of facial expressions. Image Vision Comput 18:881–905

    Article  Google Scholar 

  72. Pantic M, Rothkrantz LJM (2000) Automatic analysis of facial expressions: the state of the art. IEEE Trans Pattern Anal Mach Intell 22:1424–1445

    Article  Google Scholar 

  73. Bartlett MS, Movellan JR, Sejnowski TJ (2002) Face recognition by independent component analysis. IEEE Trans Neural Netw 13(6):1450–1464

    Article  Google Scholar 

  74. Lu J, Plataniotis KN, Venetsanopoulos AN (2002) Face recognition using LDA-based algorithms. IEEE Trans Neural Netw 14(1):195–200

    Google Scholar 

  75. Kim KI, Jung K, Kim HJ (2002) Face recognition using kernel principal component analysis. IEEE Signal Process Lett 9(2):40–42

    Article  Google Scholar 

  76. Baudat G, Anouar F (2000) Generalized discriminant analysis using a Kernel approach. Neural Comput 12(10):2385–2404

    Article  Google Scholar 

  77. Bell AJ, Sejnowski TJ (1995) A non-linear information maximization algorithm that performs blind separation. Adv Neural Inf Process Syst 7:467–474

    Google Scholar 

  78. Phillips PJ (1999) Support vector machines applied to face recognition. Adv Neural Inf Process Syst 11:113–123

    Google Scholar 

  79. Li SZ, Lu J (1999) Face recognition using the nearest feature line method. IEEE Trans Neural Netw 10(2):439–443

    Article  Google Scholar 

  80. Krüger N, Pötzsch M, Malsburg C (1997) Determination of face position and pose with a learned representation based on labeled graphs. Image Vision Comput 15(8):665–673

    Article  Google Scholar 

  81. Images from public domain. http://www.totallyfreeimages.com. Accessed 10 May 2012

  82. Images from public domain. http://www.publicdomainpictures.net. Accessed 10 May 2012

  83. Kukharev G, Kuzminski A (2002) Biometric techniques: methods of face recognition. Szczecin Technical University Press, Szczecin, Poland (in Polish: Techniki Biometryczne: Metody rozpoznawania twarzy)

    Google Scholar 

  84. Delac K, Grgic M, Grgic S (2006) Independent comparative study of PCA, ICA, and LDA on the FERET data set. Int J Imag Syst Technol 15(5):252–260

    Article  Google Scholar 

  85. Katadound S (2004) Face recognition: study and comparison of PCA and EBGM algorithms. Master thesis, Western Kentucky University

    Google Scholar 

Download references

Acknowledgement

This work was partially supported by AGH University of Science and Technology in Cracow, grant no. 11.11.220.01. The authors are indeed indebted to Marcin Rogowski for his constructive remarks and thorough proofreading of the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Kocjan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kocjan, P., Saeed, K. (2012). Face Recognition in Unconstrained Environment. In: Saeed, K., Nagashima, T. (eds) Biometrics and Kansei Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5608-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5608-7_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5607-0

  • Online ISBN: 978-1-4614-5608-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics