Skip to main content

Developmental Consequences of Prenatal Administration of Glucocorticoids in Rodents and Primates

  • Chapter
  • First Online:
Adaptive and Maladaptive Aspects of Developmental Stress

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 3))

Abstract

Since their first use in 1972 by Liggins and Howie, prenatal exposure to synthetic glucocorticoids (GCs) is commonplace in antenatal medicine to impede the preterm birth-associated morbid symptoms. Synthetic GCs are ligands of the receptor of endogenous GC, the glucocorticoid receptor. Although prenatal GC is warranted for its increased survival rate of preterm infants, the repeated exposure to synthetic GC long-term effects has been questioned, and investigation of potentially harmful long-term effects in animal studies is required. I will first summarise the existing findings in animal studies, which include two robust phenotypes: a transient reduction of body weight and alteration of the hypothalamo–pituitary–adrenal gland axis activity. Several studies assessed the neurotransmitters’ concentrations in animals exposed to prenatal GC and reported an overall increased activity of serotoninergic and dopaminergic systems. Prenatal GC administration has also been shown to increase anxiety and reduce cognitive abilities in the long term. All these effects have been proposed to be mediated via epigenetics programming, which is the change of gene expression caused by mechanisms other than the DNA sequence (e.g. promoter methylation). Interestingly, the same mechanism has been proposed to mediate the long-term effects of altered maternal behaviour, suggesting that the developing individual, from conception until weaning, is undergoing epigenetics programming based on its environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bakker JM etal (1995) Effects of short-term dexamethasone treatment during pregnancy on the development of the immune system and the hypothalamo-pituitary adrenal axis in the rat. J Neuroimmunol 63(2):183–191

    Article  PubMed  CAS  Google Scholar 

  • Bartholome B etal (2004) Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up-regulated after invitro stimulation and in patients with rheumatoid arthritis. FASEB J 18(1):70–80

    Article  PubMed  CAS  Google Scholar 

  • Baruch I, Hemsley DR, Gray JA (1988) Differential performance of acute and chronic schizophrenics in a latent inhibition task. J Nerv Ment Dis 176(10):598–606

    Article  PubMed  CAS  Google Scholar 

  • Beato M, Sanchez-Pacheco A (1996) Interaction of steroid hormone receptors with the transcription initiation complex. Endocr Rev 17(6):587–609

    PubMed  CAS  Google Scholar 

  • Brabham T etal (2000) Effects of prenatal dexamethasone on spatial learning and response to stress is influenced by maternal factors. Am J Physiol Regul Integr Comp Physiol 279(5):R1899–R1909

    PubMed  CAS  Google Scholar 

  • Braff DL, Grillon C, Geyer MA (1992) Gating and habituation of the startle reflex in schizophrenic patients. Arch Gen Psychiatry 49(3):206–215

    Article  PubMed  CAS  Google Scholar 

  • Breuner CW, Orchinik M (2002) Plasma binding proteins as mediators of corticosteroid action in vertebrates. J Endocrinol 175(1):99–112

    Article  PubMed  CAS  Google Scholar 

  • Brown RW etal (1996) Cloning and production of antisera to human placental 11 beta-hydroxysteroid dehydrogenase type 2. Biochem J 313(pt 3):1007–1017

    PubMed  CAS  Google Scholar 

  • Burlet G etal (2005) Antenatal glucocorticoids blunt the functioning of the hypothalamic-pituitary-adrenal axis of neonates and disturb some behaviors in juveniles. Neuroscience 133(1):221–230

    Article  PubMed  CAS  Google Scholar 

  • Buttgereit F, Scheffold A (2002) Rapid glucocorticoid effects on immune cells. Steroids 67(6):529–534

    Article  PubMed  CAS  Google Scholar 

  • Cannon WB (1939) The wisdom of the body. Peter Smith Publisher, New York

    Google Scholar 

  • Coe CL, Lubach GR (2005) Developmental consequences of antenatal dexamethasone treatment in nonhuman primates. Neurosci Biobehav Rev 29(2):227–235

    Article  PubMed  CAS  Google Scholar 

  • Crowther CA etal (2011) Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Syst Rev 2011(6):CD003935

    Google Scholar 

  • Davis EP, Waffarn F, Sandman CA (2011) Prenatal treatment with glucocorticoids sensitizes the hpa axis response to stress among full-term infants. Dev Psychobiol 53:175–183

    Article  PubMed  CAS  Google Scholar 

  • de Kloet ER, Reul JM, Sutanto W (1990) Corticosteroids and the brain. J Steroid Biochem Mol Biol 37(3):387–394

    Article  PubMed  Google Scholar 

  • de Vries A etal (2007) Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic-pituitary-adrenal axis function. J Clin Invest 117(4):1058–1067

    Article  PubMed  Google Scholar 

  • Diaz R, Brown RW, Seckl JR (1998) Distinct ontogeny of glucocorticoid and mineralocorticoid receptor and 11beta-hydroxysteroid dehydrogenase types I and II mRNAs in the fetal rat brain suggest a complex control of glucocorticoid actions. J Neurosci 18(7):2570–2580

    PubMed  CAS  Google Scholar 

  • Emgard M etal (2007) Prenatal glucocorticoid exposure affects learning and vulnerability of cholinergic neurons. Neurobiol Aging 28(1):112–121

    Article  PubMed  CAS  Google Scholar 

  • Foix-L’Helias L etal (2008) Impact of the use of antenatal corticosteroids on mortality, cerebral lesions and 5-year neurodevelopmental outcomes of very preterm infants: the EPIPAGE cohort study. BJOG 115(2):275–282

    Article  PubMed  Google Scholar 

  • French NP etal (1999) Repeated antenatal corticosteroids: size at birth and subsequent development. Am J Obstet Gynecol 180(1 pt 1):114–121

    Article  PubMed  CAS  Google Scholar 

  • Gayrard V, Alvinerie M, Toutain PL (1996) Interspecies variations of corticosteroid-binding globulin parameters. Domest Anim Endocrinol 13(1):35–45

    Article  PubMed  CAS  Google Scholar 

  • Gitau R etal (2001) Fetal hypothalamic-pituitary-adrenal stress responses to invasive procedures are independent of maternal responses. J Clin Endocrinol Metab 86(1):104–109

    Article  PubMed  CAS  Google Scholar 

  • Groeneweg FL etal (2011) Rapid non-genomic effects of corticosteroids and their role in the central stress response. J Endocrinol 209(2):153–167

    Article  PubMed  CAS  Google Scholar 

  • Grossmann C etal (2004) Transactivation via the human glucocorticoid and mineralocorticoid receptor by therapeutically used steroids in CV-1 cells: a comparison of their glucocorticoid and mineralocorticoid properties. Eur J Endocrinol 151(3):397–406

    Article  PubMed  CAS  Google Scholar 

  • Hales CN, Barker DJ (2001) The thrifty phenotype hypothesis. Br Med Bull 60:5–20

    Article  PubMed  CAS  Google Scholar 

  • Hauser J, Feldon J, Pryce CR (2006) Prenatal dexamethasone exposure, postnatal development, and adulthood prepulse inhibition and latent inhibition in Wistar rats. Behav Brain Res 175(1):51–61

    Article  PubMed  CAS  Google Scholar 

  • Hauser J etal (2007) Effects of prenatal dexamethasone treatment on postnatal physical, endocrine, and social development in the common marmoset monkey. Endocrinology 148(4):1813–1822

    Article  PubMed  CAS  Google Scholar 

  • Hauser J etal (2008) Effects of prenatal dexamethasone treatment on physical growth, pituitary-adrenal hormones, and performance of motor, motivational, and cognitive tasks in juvenile and adolescent common marmoset monkeys. Endocrinology 149(12):6343–6355

    Article  PubMed  CAS  Google Scholar 

  • Hauser J, Feldon J, Pryce CR (2009) Direct and dam-mediated effects of prenatal dexamethasone on emotionality, cognition and HPA axis in adult Wistar rats. Horm Behav 56(4):364–375

    Article  PubMed  CAS  Google Scholar 

  • Hougaard KS etal (2005) Prenatal stress may increase vulnerability to life events: comparison with the effects of prenatal dexamethasone. Brain Res Dev Brain Res 159(1):55–63

    Article  PubMed  CAS  Google Scholar 

  • Iqbal M etal (2012) Transgenerational effects of prenatal synthetic glucocorticoids on hypothalamic-pituitary-adrenal function. Endocrinology 153(7):3295–3307

    Article  PubMed  CAS  Google Scholar 

  • Johnson JW etal (1981) Long-term effects of betamethasone on fetal development. Am J Obstet Gynecol 141(8):1053–1064

    PubMed  CAS  Google Scholar 

  • Kreider ML etal (2005) Gestational dexamethasone treatment elicits sex-dependent alterations inloc.motor activity, reward-based memory and hippocampal cholinergic function in adolescent and adult rats. Neuropsychopharmacology 30(9):1617–1623

    Article  PubMed  CAS  Google Scholar 

  • Liggins GC, Howie RN (1972) A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 50(4):515–525

    PubMed  CAS  Google Scholar 

  • Liu L, Li A, Matthews SG (2001) Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects. Am J Physiol Endocrinol Metab 280(5):E729–E739

    PubMed  CAS  Google Scholar 

  • Malkoski SP, Dorin RI (1999) Composite glucocorticoid regulation at a functionally defined negative glucocorticoid response element of the human corticotropin-releasing hormone gene. Mol Endocrinol 13(10):1629–1644

    Article  PubMed  CAS  Google Scholar 

  • Mathews TJ, MacDorman MF (2011) Infant mortality statistics from the 2007 period linked birth/infant death data set. Natl Vital Stat Rep 59(6):1–30

    CAS  Google Scholar 

  • Mazumder P etal (2008) Single versus multiple courses of antenatal betamethasone and neonatal outcome: a randomized controlled trial. Indian Pediatr 45(8):661–667

    PubMed  Google Scholar 

  • McArthur S etal (2005) Altered mesencephalic dopaminergic populations in adulthood as a consequence of brief perinatal glucocorticoid exposure. J Neuroendocrinol 17(8):475–482

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS, Wingfield JC (2003) The concept of allostasis in biology and biomedicine. Horm Behav 43(1):2–15

    Article  PubMed  Google Scholar 

  • McKay LI, Cidlowski JA (1998) Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol 12(1):45–56

    Article  PubMed  CAS  Google Scholar 

  • McKay LI, Cidlowski JA (1999) Molecular control of immune/inflammatory responses: interactions between nuclear factor-kappa B and steroid receptor-signaling pathways. Endocr Rev 20(4):435–459

    Article  PubMed  CAS  Google Scholar 

  • McKay LI, Cidlowski JA (2000) CBP (CREB binding protein) integrates NF-kappaB (nuclear factor-kappaB) and glucocorticoid receptor physical interactions and antagonism. Mol Endocrinol 14(8):1222–1234

    Article  PubMed  CAS  Google Scholar 

  • Muneoka K etal (1997) Prenatal dexamethasone exposure alters brain monoamine metabolism and adrenocortical response in rat offspring. Am J Physiol 273(5 pt 2):R1669–R1675

    PubMed  CAS  Google Scholar 

  • Murphy VE etal (2007) Metabolism of synthetic steroids by the human placenta. Placenta 28(1):39–46

    Article  PubMed  CAS  Google Scholar 

  • N.I.H. Consensus (1994) Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH Consens Statement 12(2):1–24

    Google Scholar 

  • N.I.H. Consensus (2001) Antenatal Corticosteroids Revisited: Repeat Courses. NIH Consens Statement 17(2): 1–10

    Google Scholar 

  • Noorlander CW etal (2006) Ontogeny of hippocampal corticosteroid receptors: effects of antenatal glucocorticoids in human and mouse. J Comp Neurol 499(6):924–932

    Article  PubMed  CAS  Google Scholar 

  • Novy MJ, Walsh SW (1983) Dexamethasone and estradiol treatment in pregnant rhesus macaques: effects on gestational length, maternal plasma hormones, and fetal growth. Am J Obstet Gynecol 145(8):920–931

    PubMed  CAS  Google Scholar 

  • Oliveira M etal (2006) Induction of a hyperanxious state by antenatal dexamethasone: a case for less detrimental natural corticosteroids. Biol Psychiatry 59(9):844–852

    Article  PubMed  CAS  Google Scholar 

  • Ou XM etal (2001) Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene. J Biol Chem 276(17):14299–14307

    PubMed  CAS  Google Scholar 

  • Owen D, Matthews SG (2003) Glucocorticoids and sex-dependent development of brain glucocorticoid and mineralocorticoid receptors. Endocrinology 144(7):2775–2784

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Le Tallec L, Lombes M (2005) The mineralocorticoid receptor: a journey exploring its diversity and specificity of action. Mol Endocrinol 19(9):2211–2221

    Article  PubMed  CAS  Google Scholar 

  • Peets EA, Staub M, Symchowicz S (1969) Plasma binding of betamethasone-3H, dexamethasone-3H, and cortisol-14C—a comparative study. Biochem Pharmacol 18(7):1655–1663

    Article  PubMed  CAS  Google Scholar 

  • Pryce CR (2008) Postnatal ontogeny of expression of the corticosteroid receptor genes in mammalian brains: inter-species and intra-species differences. Brain Res Rev 57(2):596–605

    Article  PubMed  CAS  Google Scholar 

  • Pryce CR, Feldon J (2003) Long-term neurobehavioural impact of the postnatal environment in rats: manipulations, effects and mediating mechanisms. Neurosci Biobehav Rev 27(1–2):57–71

    Article  PubMed  Google Scholar 

  • Pryce CR etal (2011) The developmental impact of prenatal stress, prenatal dexamethasone and postnatal social stress on physiology, behaviour and neuroanatomy of primate offspring: studies in rhesus macaque and common marmoset. Psychopharmacology 214(1):33–53

    Article  PubMed  CAS  Google Scholar 

  • Roberts D, Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev 2006;3:CD004454

    Google Scholar 

  • Rosenfeld P etal (1993) Ontogeny of corticosteroid receptors in the brain. Cell Mol Neurobiol 13(4):295–319

    Article  PubMed  CAS  Google Scholar 

  • Schwab M, Klotz U (2001) Pharmacokinetic considerations in the treatment of inflammatory bowel disease. Clin Pharmacokinet 40(10):723–751

    Article  PubMed  CAS  Google Scholar 

  • Seckl JR (2001) Glucocorticoid programming of the fetus; adult phenotypes and molecular mechanisms. Mol Cell Endocrinol 185(1–2):61–71

    Article  PubMed  CAS  Google Scholar 

  • Seckl JR (2004) Prenatal glucocorticoids and long-term programming. Eur J Endocrinol 151(3):U49–U62

    Article  PubMed  CAS  Google Scholar 

  • Shoener JA, Baig R, Page KC (2006) Prenatal exposure to dexamethasone alters hippocampal drive on hypothalamic-pituitary-adrenal axis activity in adult male rats. Am J Physiol Regul Integr Comp Physiol 290(5):1366–1373

    Article  Google Scholar 

  • Sloboda DM, Newnham JP, Challis JR (2000) Effects of repeated maternal betamethasone administration on growth and hypothalamic-pituitary-adrenal function of the ovine fetus at term. J Endocrinol 165(1):79–91

    Article  PubMed  CAS  Google Scholar 

  • Sloboda DM etal (2002) The effect of prenatal betamethasone administration on postnatal ovine hypothalamic-pituitary-adrenal function. J Endocrinol 172(1):71–81

    Article  PubMed  CAS  Google Scholar 

  • Sloboda DM etal (2007) Prenatal betamethasone exposure results in pituitary-adrenal hyporesponsiveness in adult sheep. Am J Physiol Endocrinol Metab 292(1):E61–E70

    Article  PubMed  CAS  Google Scholar 

  • Slotkin TA etal (1996) Programming of brainstem serotonin transporter development by prenatal glucocorticoids. Brain Res Dev Brain Res 93(1–2):155–161

    Article  PubMed  CAS  Google Scholar 

  • Song IH, Buttgereit F (2006) Non-genomic glucocorticoid effects to provide the basis for new drug developments. Mol Cell Endocrinol 246(1–2):142–146

    Article  PubMed  CAS  Google Scholar 

  • Speirs HJ, Seckl JR, Brown RW (2004) Ontogeny of glucocorticoid receptor and 11beta-hydroxysteroid dehydrogenase type-1 gene expression identifies potential critical periods of glucocorticoid susceptibility during development. J Endocrinol 181(1):105–116

    Article  PubMed  CAS  Google Scholar 

  • Tegethoff M, Pryce C, Meinlschmidt G (2009) Effects of intrauterine exposure to synthetic glucocorticoids on fetal, newborn, and infant hypothalamic-pituitary-adrenal axis function in humans: a systematic review. Endocr Rev 30(7):753–789

    Article  PubMed  CAS  Google Scholar 

  • Thomassin H etal (2001) Glucocorticoid-induced DNA demethylation and gene memory during development. EMBO J 20(8):1974–1983

    Article  PubMed  CAS  Google Scholar 

  • Uno H etal (1994) Neurotoxicity of glucocorticoids in the primate brain. Horm Behav 28(4):336–348

    Article  PubMed  CAS  Google Scholar 

  • Velisek L (2006) Prenatal exposure to betamethasone decreases anxiety in developing rats: hippocampal neuropeptide y as a target molecule. Neuropsychopharmacology 31(10):2140–2149

    PubMed  CAS  Google Scholar 

  • Weaver IC etal (2004) Epigenetics programming by maternal behavior. Nat Neurosci 7(8):847–854

    Article  PubMed  CAS  Google Scholar 

  • Welberg LA, Seckl JR, Holmes MC (2001) Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Westphal U (1983) Steroid-protein interaction: from past to present. J Steroid Biochem 19(1A):1–15

    Article  PubMed  CAS  Google Scholar 

  • Wolffe AP (1998) Packaging principle: how DNA methylation and histone acetylation control the transcriptional activity of chromatin. J Exp Zool 282(1–2):239–244

    Article  PubMed  CAS  Google Scholar 

  • Wright AP etal (1993) Structure and function of the glucocorticoid receptor. J Steroid Biochem Mol Biol 47(1–6):11–19

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Hauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hauser, J. (2013). Developmental Consequences of Prenatal Administration of Glucocorticoids in Rodents and Primates. In: Laviola, G., Macrì, S. (eds) Adaptive and Maladaptive Aspects of Developmental Stress. Current Topics in Neurotoxicity, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5605-6_9

Download citation

Publish with us

Policies and ethics