Advertisement

Adaptive Estimation

Chapter
Part of the Selected Works in Probability and Statistics book series (SWPS, volume 13)

Abstract

I discuss four papers of Peter Bickel and coauthors: Bickel (1982), Bickel and Klaassen (1986), Bickel and Ritov (1987), and Ritov and Bickel (1990).

Keywords

Maximum Likelihood Estimator Efficient Score Efficient Estimator Functional Model Nuisance Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Begun JM, Hall WJ, Huang W-M, Wellner JA (1983) Information and asymptotic efficiency in parametric–nonparametric models. Ann Stat 11(2):432–452CrossRefMATHMathSciNetGoogle Scholar
  2. Beran R (1974) Asymptotically efficient adaptive rank estimates in location models. Ann Stat 2:63–74CrossRefMATHMathSciNetGoogle Scholar
  3. Bickel PJ (1982) On adaptive estimation. Ann Stat 10(3):647–671CrossRefMATHMathSciNetGoogle Scholar
  4. Bickel PJ, Klaassen CAJ (1986) Empirical Bayes estimation in functional and structural models, and uniformly adaptive estimation of location. Adv Appl Math 7(1):55–69CrossRefMATHMathSciNetGoogle Scholar
  5. Bickel PJ, Ritov Y (1987) Efficient estimation in the errors in variables model. Ann Stat 15(2):513–540CrossRefMATHMathSciNetGoogle Scholar
  6. Bickel PJ, Ritov Y (1988) Estimating integrated squared density derivatives: sharp best order of convergence estimates. Sankhyā Ser A 50(3):381–393MATHMathSciNetGoogle Scholar
  7. Bickel PJ, Klaassen CAJ, Ritov Y, Wellner JA (1993) Efficient and adaptive estimation for semiparametric models. Johns Hopkins series in the mathematical sciences. Johns Hopkins University Press, BaltimoreGoogle Scholar
  8. Bickel PJ, Klaassen CAJ, Ritov Y, Wellner JA (1998) Efficient and adaptive estimation for semiparametric models. Springer, New York. Reprint of the 1993 originalGoogle Scholar
  9. Birgé L, Massart P (1993) Rates of convergence for minimum contrast estimators. Probab Theory Relat Fields 97(1–2):113–150CrossRefMATHGoogle Scholar
  10. Birgé L, Massart P (1995) Estimation of integral functionals of a density. Ann Stat 23(1):11–29CrossRefMATHGoogle Scholar
  11. Efron B (1977) The efficiency of Cox’s likelihood function for censored data. J Am Stat Assoc 72(359):557–565CrossRefMATHMathSciNetGoogle Scholar
  12. Hájek J (1962) Asymptotically most powerful rank-order tests. Ann Math Stat 33:1124–1147CrossRefMATHGoogle Scholar
  13. Ibragimov IA, Khasminskii RZ (1981) Statistical estimation: asymptotic theory. Springer Verlag, New York (Russian ed. 1979)Google Scholar
  14. Kiefer J, Wolfowitz J (1956) Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Ann Math Stat 27:887–906CrossRefMATHMathSciNetGoogle Scholar
  15. Klaassen CAJ (1987) Consistent estimation of the influence function of locally asymptotically linear estimators. Ann Stat 15(4):1548–1562CrossRefMATHMathSciNetGoogle Scholar
  16. Kosorok MR (2009) What’s so special about semiparametric methods? Sankhyā 71(2, Ser A):331–353Google Scholar
  17. Laurent B, Massart P (2000) Adaptive estimation of a quadratic functional by model selection. Ann Stat 28(5):1302–1338CrossRefMATHMathSciNetGoogle Scholar
  18. Murphy SA, van der Vaart AW (1996) Likelihood inference in the errors-in-variables model. J Multivar Anal 59(1):81–108CrossRefMATHGoogle Scholar
  19. Neyman J, Scott EL (1948) Consistent estimates based on partially consistent observations. Econ 16:1–32CrossRefMathSciNetGoogle Scholar
  20. Pfanzagl J (1990a) Estimation in semiparametric models. Lecture notes in statistics, vol 63. Springer, New York. Some recent developmentsGoogle Scholar
  21. Pfanzagl J (1990b) Large deviation probabilities for certain nonparametric maximum likelihood estimators. Ann Stat 18(4):1868–1877CrossRefMATHMathSciNetGoogle Scholar
  22. Pfanzagl J (1993) Incidental versus random nuisance parameters. Ann Stat 21(4):1663–1691CrossRefMATHMathSciNetGoogle Scholar
  23. Reiersol O (1950) Identifiability of a linear relation between variables which are subject to error. Econometrica 18:375–389CrossRefMathSciNetGoogle Scholar
  24. Ritov Y, Bickel PJ (1990) Achieving information bounds in non and semiparametric models. Ann Stat 18(2):925–938CrossRefMATHMathSciNetGoogle Scholar
  25. Robins J, Tchetgen Tchetgen E, Li L, van der Vaart A (2009) Semiparametric minimax rates. Electron J Stat 3:1305–1321CrossRefMATHMathSciNetGoogle Scholar
  26. Rubin H (1956) Uniform convergence of random functions with applications to statistics. Ann Math Statist 27:200–203CrossRefMATHMathSciNetGoogle Scholar
  27. Schick A (1986) On asymptotically efficient estimation in semiparametric models. Ann Stat 14(3):1139–1151CrossRefMATHMathSciNetGoogle Scholar
  28. Stein C (1956) Efficient nonparametric testing and estimation. In: Proceedings of the third Berkeley symposium on mathematical statistics and probability, 1954–1955, vol I. University of California Press, Berkeley/Los Angeles, pp 187–195Google Scholar
  29. Stone CJ (1975) Adaptive maximum likelihood estimators of a location parameter. Ann Stat 3:267–284CrossRefMATHGoogle Scholar
  30. Strasser H (1996) Asymptotic efficiency of estimates for models with incidental nuisance parameters. Ann Stat 24(2):879–901CrossRefMATHMathSciNetGoogle Scholar
  31. Tchetgen E, Li L, Robins J, van der Vaart A (2008) Minimax estimation of the integral of a power of a density. Stat Probab Lett 78(18):3307–3311CrossRefMATHGoogle Scholar
  32. van der Vaart AW (1988) Estimating a real parameter in a class of semiparametric models. Ann Stat 16(4):1450–1474CrossRefMATHGoogle Scholar
  33. van der Vaart A (1991) On differentiable functionals. Ann Stat 19(1):178–204CrossRefMATHGoogle Scholar
  34. van der Vaart A (1996) Efficient maximum likelihood estimation in semiparametric mixture models. Ann Stat 24(2):862–878CrossRefMATHGoogle Scholar
  35. van Eeden C (1970) Efficiency-robust estimation of location. Ann Math Stat 41:172–181CrossRefMATHGoogle Scholar
  36. Wellner JA, Klaassen CAJ, Ritov Y (2006) Semiparametric models: a review of progress since BKRW (1993). In: Frontiers in statistics. Imperial College Press, London, pp 25–44Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of StatisticsUniversity of WashingtonSeattleUSA

Personalised recommendations