Forced Convection



The fundamental question in heat transfer engineering is to determine the relationship between the heat transfer rate and the driving temperature difference. In nature, many saturated porous media interact thermally with one another and with solid surfaces that confine them or are embedded in them. In this chapter we analyze the basic heat transfer question by looking only at forced-convection situations, in which the fluid flow is caused (forced) by an external agent unrelated to the heating effect. First we discuss the results that have been developed based on the Darcy flow model and later we address the more recent work on the non-Darcy effects. We end this chapter with a review of current engineering applications of the method of forced convection through porous media. Some fundamental aspects of the subject have been discussed by Lage and Narasimhan (2000), and the topic has been reviewed by Lauriat and Ghafir (2000).


Heat Transfer Porous Medium Nusselt Number Heat Transfer Rate Viscous Dissipation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Engineering ScienceUniversity of AucklandAucklandNew Zealand
  2. 2.Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamUSA

Personalised recommendations