Skip to main content

Experimental Design and Data Generation

  • Chapter
  • First Online:
Predictive Microbiology in Foods

Part of the book series: SpringerBriefs in Food, Health, and Nutrition ((BRIEFSFOOD,volume 5))

Abstract

One of the most critical steps when generating a predictive model is to correctly design an experiment and collect suitable microbial data. Experimental design will influence model structure and validation conditions. The survival and growth of microorganisms in foods is affected not only by the chemical composition of the food and its storage conditions but also by the food matrix. In this sense, a better quantification of the food structure effect has been studied throughout these years. Regarding the method of data collection, although plating count has been widely used (and still is used), there are rapid methods to obtain reliable and cost-effective data. These achievements were primarily based on turbidimetry, although other methods (microscopy, image analysis, flow cytometry, etc.) have arisen as novel approaches in the predictive microbiology field. These aspects are further discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with Image J. J Biophotonics Int 11:36–42

    Google Scholar 

  • Antwi M, Bernaerts K, Van Impe JF, Geeraerd AH (2007) Modelling the combined effects of structured food model system and lactic acid on Listeria innocua and Lactococcus lactis growth in mono- and co-culture. Int J Food Microbiol 120:71–84. doi:10.1016/j.ijfoodmicro.2007.04.015

    Article  CAS  Google Scholar 

  • Arroyo-López F, Orlić S, Querol A, Barrio E (2009) Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. Int J Food Microbiol 131:120–127. doi:10.1016/j.ijfoodmicro.2009.01.035

    Article  Google Scholar 

  • Augustin JC, Rosso L, Carlier V (1999) Estimation of temperature dependent growth rate and lag time of Listeria monocytogenes by optical density measurements. J Microbiol Methods 38:137–146

    Article  CAS  Google Scholar 

  • Baert K, Valero A, De Meulenaer B, Samapundo S, Ahmed MM, Bo L, Debevere J, Devlieghere F (2007) Modeling the effect of temperature on the growth rate and lag phase of Penicillium expansum in apples. Int J Food Microbiol 118:139–150. doi:10.1016/j.ijfoodmicro.2007.07.006

    Article  CAS  Google Scholar 

  • Begot C, Desnier I, Daudin JD, Labadie JC, Lebert A (1996) Recommendations for calculating growth parameters by optical density measurements. J Microbiol Methods 25:225–232. doi:10.1016/0167-7012(95)00090-9

    Article  Google Scholar 

  • Bredholt S, Nesbakken T, Holck A (1999) Protective cultures inhibit growth of Listeria monocytogenes and Escherichia coli O157:H7 in cooked, sliced, vacuum- and gas-packaged meat. Int J Food Microbiol 53:43–52. doi:10.1016/S0168-1605(99)00147-6

    Article  CAS  Google Scholar 

  • Cheroutre-Vialette M, Lebert A (2002) Application of recurrent neural network to predict bacterial growth in dynamic conditions. Int J Food Microbiol 73:107–118. doi:10.1016/S0168-1605(01)00642-0

    Article  CAS  Google Scholar 

  • Cuppers HGM, Smelt JPPM (1993) Time to turbidity measurement as a tool for modeling spoilage by Lactobacillus. J Ind Microbiol 12:168–171. doi:10.1007/BF01584186

    Article  Google Scholar 

  • Dalgaard P, Koutsoumanis K (2001) Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. J Microbiol Methods 43:183–196. doi:10.1016/S0167-7012(00)00219-0

    Article  CAS  Google Scholar 

  • Dalgaard P, Ross T, Kamperman L, Neumeyer K, McMeekin TA (1994) Estimation of bacterial growth rates from turbidimetric and viable count data. Int J Food Microbiol 23:391–404. doi:10.1016/0168-1605(94)90165-1

    Article  CAS  Google Scholar 

  • Dantigny P, Marín S, Beyer M, Magan N (2007) Mould germination: data treatment and modelling. Int J Food Microbiol 114:17–24. doi:10.1016/j.ijfoodmicro.2006.11.002

    Article  Google Scholar 

  • Dens EJ, Van Impe JF (2000) On the importance of taking space into account when modeling microbial competition in structured food products. Math Comput Simul 53:443–448. doi:10.1016/S0378-4754(00)00239-1

    Article  Google Scholar 

  • Devlieghere F (2000) Predictive modelling of the spoilage and the microbial safety of modified atmosphere packaged cooked meat products. Ph.D. thesis, Faculty of Agricultural and Applied Biological Sciences, Ghent University, Belgium

    Google Scholar 

  • US Food and Drug Administration (2009) Microbiological challenge testing. Evaluation and definition of potentially hazardous foods. Available at http://www.fda.gov/Food/ScienceResearch/ResearchAreas/SafePracticesforFoodProcesses/ucm094154.htm. Accessed 20 March 2012

  • Dykes G (1999) Image analysis of colony size for investigatin sublethal injury in Listeria monocytogenes. J Rap Methods Auto Microbiol 7:223–231

    Article  Google Scholar 

  • Endo H, Nagano Y, Ren H, Hayashi T (2001) Rapid enumeration of bacteria grown on surimi-based products by flow cytometry. Fish Sci 67:969–974. doi:10.1046/j.1444-2906.2001.00348.x

    Article  CAS  Google Scholar 

  • Fehlhaber K, Krüger G (1998) The study of Salmonella enteritidis growth kinetics using rapid automated bacterial impedance technique. J Appl Microbiol 84:945–949. doi:10.1046/j.1365-2672.1998.00410.x

    Article  CAS  Google Scholar 

  • Fernandes RL, Nierychlo M, Lundin L, Pedersen AE, Tellez PEP, Dutta A, Carlquist M, Bolic A, Schapper D, Brunetti AC, Helmark S, Heins AL, Jensen AD, Nopens I, Rottwitt K, Szita N, van Elsas JD, Nielsen PH, Martinussen J, Sorensen SJ, Lantz AE, Gernaey KV (2011) Experimental methods and modeling techniques for description of cell population heterogeneity. Biotechnol Adv 29:575–599. doi:10.1016/j.biotechadv.2011.03.007

    Article  Google Scholar 

  • Ferrer J, Prats C, López D, Vives-Rego J (2009) Mathematical modelling methodologies in predictive food microbiology: a SWOT analysis. Int J Food Microbiol 134:2–8. doi:10.1016/j.ijfoodmicro.2009.01.016

    Article  Google Scholar 

  • Garcia D, Ramos AJ, Sanchis V, Marín S (2010) Modelling mould growth under suboptimal environmental conditions and inoculum size. Food Microbiol 27:909–917. doi:10.1016/j.fm.2010.05.015

    Article  Google Scholar 

  • Gibson AM, Bartchetll N, Roberts TA (1987) The effect of sodium chloride and temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurised pork slurry. J Appl Bacteriol 62:479–490. doi:10.1111/j.1365-2672.1987.tb02680.x

    Article  CAS  Google Scholar 

  • Gougouli M, Koutsoumanis KP (2012) Modeling germination of fungal spores at constant and fluctuating temperature conditions. Int J Food Microbiol 152:153–161. doi:10.1016/j.ijfoodmicro.2011.07.030

    Article  Google Scholar 

  • Guillier L, Pardon P, Augustin JC (2006) Automated image analysis of bacterial colony growth as a tool to study individual lag time distributions of immobilised cells. J Microbiol Methods 65:324–334. doi:10.1016/j.mimet.2005.08.007

    Article  CAS  Google Scholar 

  • Gysemans KPM, Bernaerts K, Vermeulen A, Geeraerd AH, Debevere J, Devlieghere F, Van Impe JF (2007) Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes. Int J Food Microbiol 114:316–331. doi:10.1016/j.ijfoodmicro.2006.09.026

    Article  CAS  Google Scholar 

  • Hills BP, Manning CE, Ridge YP, Brocklehurst TF (1997) Water availability and the survival of Salmonella typhimurium in porous systems. Int J Food Microbiol 36:187–198. doi:10.1016/S0168-1605(97)01265-8

    Article  CAS  Google Scholar 

  • Holm C, Mathiasen T, Jespersen L (2004) A flow cytometric technique for quantification and differentiation of bacteria in bulk tank milk. J Appl Microbiol 97:935–941. doi:10.1111/j.1365-2672.2004.02346.x

    Article  CAS  Google Scholar 

  • ILSI (International Life Sciences Institute). Europe risk analysis in food microbiology task force industry members (2010) Impact of microbial distributions on food safety. ISBN 9789078637202

    Google Scholar 

  • Jasson V, Jacxsens L, Luning P, Rajkovic A, Uyttendaele M (2010) Alternative microbial methods: an overview and selection criteria. Food Microbiol 27:710–730. doi:10.1016/j.fm.2010.04.008

    Article  Google Scholar 

  • Judet-Correia D, Bollaert S, Duquenne A, Charpentier C, Bensoussan M, Dantigny P (2010) Validation of a predictive model for the growth of Botrytis cinerea and Penicillium expansum on grape berries. Int J Food Microbiol 142:106–113. doi:10.1016/j.ijfoodmicro.2010.06.009

    Article  Google Scholar 

  • Koutsoumanis K, Nychas GJE (2000) Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life prediction. Int J Food Microbiol 60:171–184. doi:10.1016/S0168-1605(00)00309-3

    Article  CAS  Google Scholar 

  • Lanzanova M, Mucchetti G, Neviani E (1993) Analysis of conductance changes as a growth index of lactic acid bacteria in milk. J Dairy Sci 76:20–28. doi:10.3168/jds.S0022-0302(93)77319-1

    Article  CAS  Google Scholar 

  • Lianou A, Koutsoumanis KP (2011) Effect of the growth environment on the strain variability of Salmonella enterica kinetic behavior. Food Microbiol 28:828–837. doi:10.1016/j.fm.2010.04.006

    Article  Google Scholar 

  • Lindberg CW, Borch E (1994) Predicting the aerobic growth of Yersinia enterocolitica O:3 at different pH-values, temperatures and l-lactate concentrations using conductance measurements. Int J Food Microbiol 22:141–153. doi:10.1016/0168-1605(94)90138-4

    Article  CAS  Google Scholar 

  • Lindqvist R (2006) Estimation of Staphylococcus aureus growth parameters from turbidity data: characterization of strain variation and comparison of methods. Appl Environ Microbiol 72:4862–4870. doi:10.1128/AEM.00251-06

    Article  CAS  Google Scholar 

  • McDonald K, Sun DW (1999) Predictive food microbiology for the meat industry: a review. Int J Food Microbiol 52:1–27. doi:10.1016/S0168-1605(99)00126-9

    Article  CAS  Google Scholar 

  • McKellar RC, Lu XW (2001) A probability of growth model for Escherichia coli O157:H7 as a function of temperature, pH, acetic acid, and salt. J Food Prot 64:1922–1928

    CAS  Google Scholar 

  • McMeekin TA, Olley J, Ross T, Ratkowsky DA (1993a) Predictive microbiology: theory and application. Research Studies Press, Taunton

    Google Scholar 

  • Mertens L, Van Derlinden E, Van Impe JF (2012) Comparing experimental design schemes in predictive food microbiology: optimal parameter estimation of secondary models. J Food Eng. doi:10.1016/j.jfoodeng.2012.03.018

  • Métris A, Le Marc Y, Elfwing A, Ballagi A, Baranyi J (2005) Modelling the variability of lag times and the first generation times of single cells of E. coli. Int J Food Microbiol 100:13–19. doi:10.1016/j.ijfoodmicro.2004.10.004

    Article  Google Scholar 

  • Niven GW, Fuks T, Morton JS, Rua SACG, Mackey BM (2006) A novel method for measuring lag times in division of individual bacterial cells using image analysis. J Microbiol Methods 65:311–317. doi:10.1016/j.mimet.2005.08.006

    Article  Google Scholar 

  • Noble PA (1999) Hypothetical model for monitoring microbial growth by using capacitance measurements: a mini review. J Microbiol Methods 37:45–49

    Google Scholar 

  • Noriega E, Laca A, Diaz M (2008) Modelling of diffusion-limited growth to predict Listeria distribution in structured model foods. J Food Eng 87:247–256. doi:10.1016/j.jfoodeng.2007.11.035

    Article  Google Scholar 

  • Pin C, Sutherland JP, Baranyi J (1999) Validating predictive models of food spoilage organisms. J Appl Microbiol 87:491–499. doi:10.1046/j.1365-2672.1999.00838.x

    Article  CAS  Google Scholar 

  • Poschet F, Van Impe JF (1999) Quantifying the uncertainty of model outputs in predictive microbiology: a Monte-Carlo analysis. Meded Fac Landbouwwet Univ Gent 64(5):499–506

    Google Scholar 

  • Rasch M (2004) Experimental design and data collection. In: Mckellar RC, Lu X (eds) Modelling microbial response in food. CRC Press, Boca Raton, pp 1–20

    Google Scholar 

  • Rosso L, Robinson TP (2001) A cardinal model to describe the effect of water activity on the growth of moulds. Int J Food Microbiol 63:265–273. doi:10.1016/S0168-1605(00)00469-4

    Article  CAS  Google Scholar 

  • Salter MA, Ross T, Ratkowsky DA, McMeekin TA (2000) Modelling the combined temperature and salt (NaCl) limits for growth of a pathogenic Escherichia coli strain using generalised non-linear regression. Int J Food Microbiol 61:159–167. doi:10.1016/S0168-1605(00)00352-4

    Article  CAS  Google Scholar 

  • Skandamis PN, Stopforth JD, Kendall P, Belk KE, Scanga JA, Smith GC, Sofos JN (2007) Modeling the effect of inoculum size and acid adaptation on growth/no growth interface of Escherichia coli O157:H7. Int J Food Microbiol 120:237–249. doi:10.1016/j.ijfoodmicro.2007.08.028

    Article  CAS  Google Scholar 

  • Sørensen B, Jakobsen M (1996) The combined effects of temperature, pH and NaCl on growth of Debaryomyces hansenii analyzed by flow cytometry and predictive microbiology. Int J Food Microbiol 34:209–220. doi:10.1006/fmic.1996.0032

    Article  Google Scholar 

  • Stringer SC, Webb MD, Peck MW (2011) Lag time variability in individual spores of Clostridium botulinum. Food Microbiol 28:228–235. doi:10.1016/j.fm.2010.03.003

    Article  CAS  Google Scholar 

  • Tassou CC, Natskoulis PI, Magan N, Panagou EZ (2009) Effect of temperature and water activity on growth and ochratoxin A production boundaries of two Aspergillus carbonarius isolates on a simulated grape juice medium. J Appl Microbiol 107:257–268. doi:10.1111/j.1365-2672.2009.04203.x

    Article  CAS  Google Scholar 

  • Valero A, Pérez-Rodríguez F, Carrasco E, García-Gimeno RM, Zurera G (2006) Modeling the growth rate of Listeria monocytogenes using absorbance measurements and calibration curves. J Food Sci 71:M257–M264. doi:oi.org/10.1111/j.1750-3841.2006.00139.x

    Article  CAS  Google Scholar 

  • Valero A, Pérez-Rodríguez F, Carrasco E, Fuentes-Alventosa JM, Garcia-Gimeno RM, Zurera G (2009) Modelling the growth boundaries of Staphylococcus aureus: effect of temperature, pH and water activity. Int J Food Microbiol 133:186–194. doi:10.1016/j.ijfoodmicro.2009.05.023

    Article  CAS  Google Scholar 

  • Valero A, Rodríguez M, Carrasco E, Pérez-Rodríguez F, García-Gimeno RM, Zurera G (2010) Studying the growth boundary and subsequent time to growth of pathogenic Escherichia coli serotypes by turbidity measurements. Food Microbiol 27:819–828. doi:10.1016/j.fm.2010.04.016

    Article  CAS  Google Scholar 

  • Wilson PDG, Brocklehurst TF, Arino S, Thuault D, Jakobsen M, Lange M, Farkas J, Wimpenny WT, Van Impe JF (2002) Modelling microbial growth in structured foods: towards a unified approach. Int J Food Microbiol 73:275–289. doi:10.1016/S0168-1605(01)00660-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Fernando Pérez-Rodríguez and Antonio Valero

About this chapter

Cite this chapter

Pérez-Rodríguez, F., Valero, A. (2013). Experimental Design and Data Generation. In: Predictive Microbiology in Foods. SpringerBriefs in Food, Health, and Nutrition, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5520-2_2

Download citation

Publish with us

Policies and ethics