Skip to main content

Embryonic Stem Cells: Problems and Possible Solutions

  • Chapter
  • First Online:
  • 1918 Accesses

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

Abstract

Animal models have demonstrated that transplanted embryonic cells are exposed to the immune reactions similar to those acting on organ transplants, hence immunosuppression of the recipient is generally required. It is, however, possible to obtain embryonic stem cells that are genetically identical to the patient’s own cells. The nucleus from the patient’s somatic cell is transferred into an egg after removal of the egg’s own genetic material (a technique known as nuclear transfer or therapeutic cloning). Under specific condition the egg will use genetic information from the patient’s somatic cell in organizing the formation of a blastocyst which in turn generates embryonic stem cells. These cells have a genetic composition identical to that of patient, are suitable for stem cell therapy, will generate patient’s own proteins, and escape the danger for “self-attack” and immune rejection [1].

Glory is fleeting, but obscurity is forever.

- Napoleon Bonaparte

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  Google Scholar 

  2. Andrews PW, Damjanov I, Simon D, Banting GS, Carlin C, Dracopoli NC, Fogh J (1984) Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Differentiation in vivo and in vitro. Lab Invest 50:147–162

    Google Scholar 

  3. Andrews PW (1988) Human teratocarcinomas. Biochim Biophys Acta 948:17–36

    Google Scholar 

  4. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 55:254–259

    Article  Google Scholar 

  5. Andrews PW (1998) Teratocarcinomas and human embryology: pluripotent human EC cell lines. Review article. APMIS 106:158–167

    Article  Google Scholar 

  6. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95:13726–13731

    Article  Google Scholar 

  7. Bongso A, Fong CY, Ng SC, Ratnam SS (1994) Blastocyst transfer in human in vitro: fertilization; the use of embryo co-culture. Cell Biol Int 18:1181–1189

    Article  Google Scholar 

  8. Bongso A, Fong CY, Ng SC, Ratnam S (1994) Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 9:2110–2117

    Google Scholar 

  9. Bongso A, Fong CY, Ng SC, Ratnam SS (1995) Co-culture techniques for blastocyst transfer and embryonic stem cell production. Asst Reprod Rev 5:106–114

    Google Scholar 

  10. Bongso A (1996) Behaviour of human embryos in vitro in the first 14 days: blastocyst transfer and embryonic stem cell production. Clin Sci 91:248–249

    Google Scholar 

  11. Kleinsmith LJ, Pierce GB Jr (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1551

    Google Scholar 

  12. Thompson S, Stern PL, Webb M, Walsh FS, Engstrom W, Evans EP, Shi WK, Hopkins B, Graham CF (1984) Cloned human teratoma cells differentiate into neuron-like cells and other cell types in retinoic acid. J Cell Sci 72:37–64

    Google Scholar 

  13. Bongso A (1999) Handbook on blastocyst culture. Sydney Press Indusprint, Singapore

    Google Scholar 

  14. Trounson AO, Gardner DK, Baker G, Barnes FL, Bongso A, Bourne H, Calderon I, Cohen J, Dawson K, Eldar-Geve T, Gardner DK, Graves G, Healy D, Lane M, Leese HJ, Leeton J, Levron J, Liu DY, MacLachlan V, Munné S, Oranratnachai A, Rogers P, Rombauts L, Sakkas D, Sathananthan AH, Schimmel T, Shaw J, Trounson AO, Van Steirteghem A, Willadsen S, Wood C (2000) Handbook of in vitro fertilization. CRC, Boca Raton

    Google Scholar 

  15. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  Google Scholar 

  16. Trounson AO, Anderiesz C, Jones G (2001) Maturation of human oocytes in vitro and their developmental competence. Reproduction 121:51–75

    Article  Google Scholar 

  17. Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256

    Article  Google Scholar 

  18. De Vos A, Van Steirteghem A (2000) Zona hardening, zona drilling and assisted hatching: new achievements in assisted reproduction. Cells Tissues Organs 166:220–227

    Article  Google Scholar 

  19. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  Google Scholar 

  20. Fong CY, Bongso A, Ng SC, Kumar J, Trounson A, Ratnam S (1998) Blastocyst transfer after enzymatic treatment of the zona pellucida: improving in-vitro fertilization and understanding implantation. Hum Reprod 13:2926–2932

    Article  Google Scholar 

  21. Friedrich TD, Regenass U, Stevens LC (1983) Mouse genital ridges in organ culture: the effects of temperature on maturation and experimental induction of teratocarcinogenesis. Differentiation 24:60–64

    Article  Google Scholar 

  22. Gardner DK, Schoolcraft WB (1999) Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol 11:307–311

    Article  Google Scholar 

  23. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, Soreq H, Benvenisty N (2000) Differentiation of human embryonic stem cells into embryoid bodies comprising the three embryonic germ layers. Mol Med 6:88–95

    Google Scholar 

  24. Jones GM, Trounson AO, Lolatgis N, Wood C (1998) Factors affecting the success of human blastocyst development and pregnancy following in vitro fertilization and embryo transfer. Fertil Steril 70:1022–1029

    Article  Google Scholar 

  25. Jones JM, Thomson JA (2000) Human embryonic stem cell technology. Semin Reprod Med 18:219–223

    Article  Google Scholar 

  26. Khosla S, Dean W, Brown D, Reik W, Feil R (2001) Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 64:918–926

    Article  Google Scholar 

  27. Bongso A, Fong CY, Mathew J, Ng LC, Kumar J, Ng SC (1999) The benefits to human IVF by transferring embryos after the in vitro embryonic block: alternatives to day 2 transfers. Asst Reprod Rev 9:70–78

    Google Scholar 

  28. Martin GR (1980) Teratocarcinomas and mammalian embryogenesis. Science 209:768–776

    Article  Google Scholar 

  29. Resnick JL, Bixler LS, Cheng L, Donovan PJ (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550–551

    Article  Google Scholar 

  30. Pera MF, Reubinoff B, Trounson A (2000) Human embryonic stem cells. J Cell Sci 113(Pt 1):5–10

    Google Scholar 

  31. Pera MF, Cooper S, Mills J, Parrington JM (1989) Isolation and characterization of a multipotentclone of human embryonal carcinoma cells. Differentiation 42:10–23

    Article  Google Scholar 

  32. Rathjen PD, Lake J, Whyatt LM, Bettess MD, Rathjen J (1998) Properties and uses of embryonic stem cells: prospects for application to human biology and gene therapy. Reprod Fertil Dev 10:31–47

    Article  Google Scholar 

  33. Reubinoff BE, Pera M, Fong CY, Trounson A, Bongso A (2000) Research errata. Nat Biotechnol 18:559

    Article  Google Scholar 

  34. Sathananthan AH (1997) Ultrastructure of the human egg. Hum Cell 10:21–38

    Google Scholar 

  35. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton D, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97:11307–11312

    Article  Google Scholar 

  36. Shamblott MJ, Axelman J, Littlefield JW, Blumenthal PD, Huggins GR, Cui Y, Cheng L, Gearhart JD (2001) Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci USA 98:113–118

    Article  Google Scholar 

  37. Smith AG (2001) Origins and properties of mouse embryonic stem cells. Annu Rev Cell Dev Biol

    Google Scholar 

  38. Odorico JS, Kaufman DS, Thomson JA (2001) Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19:193–204

    Article  Google Scholar 

  39. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Pavlovic, M., Balint, B. (2013). Embryonic Stem Cells: Problems and Possible Solutions. In: Stem Cells and Tissue Engineering. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5505-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5505-9_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5504-2

  • Online ISBN: 978-1-4614-5505-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics