Neurological Diseases and Stem Cell Therapy

  • Mirjana Pavlovic
  • Bela Balint
Part of the SpringerBriefs in Electrical and Computer Engineering book series (BRIEFSELECTRIC)


In stroke, occlusion of a cerebral artery leads to focal ischemia in a restricted central nervous system (CNS) region. Many different types of neurons and glial cells degenerate in stroke. It has not yet been convincingly demonstrated that neuronal replacement induces symptomatic relief in individuals who have suffered strokes.


Stem Cell Spinal Cord Injury Amyotrophic Lateral Sclerosis Embryonic Stem Cell Cancer Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pluchino S, Zanotti L, Deleldi M, Martino G (2005) Neural stem cells and their use as therapeutic tool in neurological disorders. Curr Drug Target 6(1):3–19CrossRefGoogle Scholar
  2. 2.
    Ben-Hur T, Einstein O, Bulte JWM (2005) Stem cell therapy for myelin diseases. Curr Pharm Des 11(10):1255–1265CrossRefGoogle Scholar
  3. 3.
    Barker RA, Jain M, Armstrong RJE, Caldwell MA (2003) Stem cells and neurological disease. J Neurol Neurosurg Psychiatr 74:553–557CrossRefGoogle Scholar
  4. 4.
    Herzog EL, Chai L, Krause DS (2003) Plasticity of marrow derived stem cells. Blood 102(10):3483–3493CrossRefGoogle Scholar
  5. 5.
    Long Y, Yang KY (2003) Bone marrow derived cells for brain repair: recent findings and current controversies. Curr Mol Med 3(8):719–725CrossRefGoogle Scholar
  6. 6.
    Song SJ, Sanzhez-Ramos J (2003) Brain as the sea of marrow. Exp Neurol 184(1):54–60CrossRefGoogle Scholar
  7. 7.
    Priller J (2003) Adult bone marrow cells populate the brain. Histochem Cell Biol 120(2):85–89CrossRefGoogle Scholar
  8. 8.
    Hara K, Yasuhara T, Maki M, Matsukawa N, Masuda Seong T, Yu J, Ali M, Yu G, Xu Seung L, DavidU K, Hess and Cesar C, Borlongan V (2008) Neural progenitor NT2N cell lines from teratocarcinoma for transplantation therapy in stroke. Prog Neurobiol 85(3):318–334CrossRefGoogle Scholar
  9. 9.
    Darsalia V, Kallur T, Kokaia Z (2007) Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. Europ J Neurosci 26(3):605–614CrossRefGoogle Scholar
  10. 10.
    Molina-Holgado F, Rubio-Araiz A, Garcia-Ovejero D, Moore WRJ, Arevalo-Martin A, Gomez-Torres O, Molina-Holgado E (2007) CB2 cannabinoid receptors promot mouse neural stem cell proliferation. Europ J Neurosci 25:3CrossRefGoogle Scholar
  11. 11.
    Ma V, Fitzgerald W, Liu Q-Y, Shaugnessy TJ, Maric D, Lin HJ, Alkon DL, Barker JL (2004) CNS stem and progenitor cell differentiation into functional neuronal circuits in three dimensional collagen gels. Exp Neur 190(2):276–288CrossRefGoogle Scholar
  12. 12.
    Hess DC, Hill WD, Carroll JE, Borlongan CV (2004) Do bone marrow cells generate neurons? Arch Neurol 61(4):483–485CrossRefGoogle Scholar
  13. 13.
    Vitry S, Bertrand JY, Cumano A, Dubois-Dalcq M (2003) Primordial hematopoietic stem cells generate microglia but not myelin-forming cells in a neural environment. J Neurosci 23(33):10724–10731Google Scholar
  14. 14.
    Seaberg RM, Smukler SR, Kieeffer TJ, Enikolopov G, Asghar Z, Wheeler MB, Korbutt G, van der Kooy D (2004) Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22:1115–1124CrossRefGoogle Scholar
  15. 15.
    Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96:25–34CrossRefGoogle Scholar
  16. 16.
    Gage FH, Kempermann G, Palmer TD, Peterson DA, Jasodhara R (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36(2):249–266CrossRefGoogle Scholar
  17. 17.
    Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, Peterson DA, Suhr ST, Jasodhara R (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. PNAS 92(25):11879–11883CrossRefGoogle Scholar
  18. 18.
    Shyu W-C, Lin S-Z, Lee C-C, Liu DD, Li H (2006) Granulocyte colony stimulating factor for acute ischemic stroke: a randomized controlled trial. CMAJ 174:927–933CrossRefGoogle Scholar
  19. 19.
    Lee ST, Chu K, Jung KH, Ko SY, Kim EH, Sinn DI, Lee YS, Lo EH, Kim M, Roh JK (2005) Granulocyte colony stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res 1058:120–128CrossRefGoogle Scholar
  20. 20.
    Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ (2005) Bone marrow as home of heterogeneous populations of nonhematopoietic stem cells. Leukemia 19:1118–1127CrossRefGoogle Scholar
  21. 21.
    Kucia M, Ratajczak J, Ratajczak ZM (2005) Bone marrow as a source of circulating CXR4+ tissue-committed stem cells. Biol Cell 97:133–146CrossRefGoogle Scholar
  22. 22.
    Kucia M, Ratajczak J, Ratjczak MX (2005) Are bone marrow cells plastic or heterogeneous—that is the question. Exp Hematol 33(6):613–623CrossRefGoogle Scholar
  23. 23.
    Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–856CrossRefGoogle Scholar
  24. 24.
    Kucia M, Wojakowski W, Ryan R, Machalinski B, Gozdzik J, Majka M, Baran J, Ratajczak J, Ratjczak MZ (2006) The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in and SDF-1-, HGF-, and LIF dependent manner. Arch Immunol Ther Exp 54(2):121–135CrossRefGoogle Scholar
  25. 25.
    Kucia M, Zhang YP, Reac R, Wysoczynski M, Machalinski B, Majka M, Ildstad ST, Ratajczak JU, Chields CB, Ratajczak MZ (2006) Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20:18–28CrossRefGoogle Scholar
  26. 26.
    Kucia M, Reca R, Campbell FR, Surma-Zuba E, Majka M, Ratajczak M, Ratajczak MZ (2006) A population of very small embryonic-like (VSEL) CXR4+SSEA-1+Oct4+ stem cells identified in adult bone marrow. Leukemia 20:857–869CrossRefGoogle Scholar
  27. 27.
    Gilbertson RJ (2007) Brain tumor stem cells lurk in perivascular niches. Cancer Cell 11:3–5CrossRefGoogle Scholar
  28. 28.
    Nakano I, Dougherty JD, Kim K, Geschwind DH, Kornblum HI (2007) Phosphoserine phosphatase is expressed in neural stem cell niche and regulates neural stem cell proliferation. Stem Cells 25(8):1975–1984CrossRefGoogle Scholar
  29. 29.
    Nakano I, Masterman-Smith M, Horvath S, Paucar AA, Lilievre V, Waschek JA, Lazareff JA, Freije WA, Gilbertson RJ, Liau LM, Geschwind DH, Nelson S, Mischel PS, Kornblum HI (2007) Maternal embryonic leucine zipper kinase (MELK) is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. J Neurosci Res 86(1):48–60CrossRefGoogle Scholar
  30. 30.
    Virchow R (1863) Cellular pathology as based upon physiological and pathological histology. Lippincott, PhiladelphiaGoogle Scholar
  31. 31.
    Stevens LC (1970) Experimental production of testicular teratomas in mice of strains 129, A/He, and their F1hybrids. J Natl Cancer Inst 44:923–929Google Scholar
  32. 32.
    McCulloch EA, Minden MD, Miyauchi J, Kelleher CA, Wang C (1988) Stem cell renewal and differentiation in acute myeloblastic leukaemia. J Cell Sci Suppl 10:267–281Google Scholar
  33. 33.
    Yang Z-J, Ellis T, Markant SL, Read T-A, Kessler JD, Bourboulas M, Schüller U, Machold R, Fishell G, Rowitch DH, Wainwright BH, Wechsler-Reya RJ (2008) Medulloblastoma can be initiated in lineage-restricted progenitors or stem cells. Cancer Cell 14:135–145CrossRefGoogle Scholar
  34. 34.
    Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. PNAS 100(25):15178–15183CrossRefGoogle Scholar
  35. 35.
    Nakano I, Kornblum HI (2009) Methods for analysis of brain tumor stem cell and neural stem cell self-renewal. Methods Mol Biol 568:37–56CrossRefGoogle Scholar
  36. 36.
    Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:2213–2222CrossRefGoogle Scholar
  37. 37.
    Thomas ED (1999) Bone marrow transplantation: a review. Semin Hematol 36:95–103Google Scholar
  38. 38.
    Jackson KA, Goodell MA (2004) Generation and stem cell repair of cardiac tissue. In: Sell S (ed) Stem cell handbook. Humana Press, Totowa, pp 259–266Google Scholar
  39. 39.
    Barker RA, Widner H (2004) Immune problems in the central nervous system cell therapy. NeuroRx 1:472–481CrossRefGoogle Scholar
  40. 40.
    Espinosa-Heidmann DG, Caicedo A, Hernandez EP, Csaky KG, Cousins SW (2003) Bone marrow-derived progenitor cells contribute to experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 44(11):4914–4919CrossRefGoogle Scholar
  41. 41.
    Locatelli F, Corti S, Donadoni C, Guglieri M, Capra F et al (2003) Neuronal differentiation of murine bone marrow Thy-1- and Sca 1-positiev cells. J Hematother Stem Cell Res 12(6):727–734CrossRefGoogle Scholar
  42. 42.
    Jin HK, Schuchman EH (2003) Ex vivo gene therapy using bone marrow-derived cells: combined effects of intracerebral and intravenous transplantation in a mouse model of Niemann-Pick disease. Mol Ther 8(6):876–885CrossRefGoogle Scholar
  43. 43.
    Kitazawa M, Vasilevko V, Cribbs DH, LaFerla FM (2009) Immunization with amyloid-beta attebuates inclusion body myositis-like myopathy and motor impairment in a transgenic mouse. J Neurosc 29(19):6132–6141CrossRefGoogle Scholar
  44. 44.
    Sugaya K (2003) Stem cell therapy—a new option for AD patients? In: Richter RW, Richter B (eds) Alzheimer’s disease—the basics. A Physician’s guide to the practical management. Humana Press Spring, TotowaGoogle Scholar
  45. 45.
    Sugaya K (2005) Stem cell strategies for Alzheimer’s disease. In: Hanin I, Cacabelos R, Fisher A (eds) Recent progress in Alzheimer’s and Parkinson’s diseases. Taylor & Francis, London, pp 183–190Google Scholar
  46. 46.
    Pulido JS, Sugaya K (2005) Papel de las celulas madre en la degeneracion macular asociada a l’edad. In: Mones J, Gomez-Ula (eds) Degeneracion macular asocial a la edad. Prous Science, Barcelona, pp 343–350Google Scholar
  47. 47.
    Sugaya K (2005) Possible stem cell therapy for Alzheimer’s disease and its future direction. In: Kanazawa I, Shibazaki H, Tougi H (eds) Modern medical treatment in neurology. Brains Network, Japan, pp 108–114Google Scholar
  48. 48.
    Kwak Y-D, Sugaya K (2006) RNA interference in human NTera-2/D1 cell lines using human U6 promoter-based siRNA PCR products. Biotechnology and Bioprocess Engineering 2006, 11(3):273–276Google Scholar
  49. 49.
    Kwak Y-D, Choumkina E, Sugaya K (2006) Amyloid precursor protein is involved in staurosporine induced glial differentiation of neural progenitor cells. Biochem Biophys Res Commun 344(1):431–437CrossRefGoogle Scholar
  50. 50.
    Kwak Y-D, Kim HM, Qu T, Brannen CL, Soba P, Majumdar A, Kaplan A, Beyreuther K, Sugaya K (2006) Amyloid precursor protein cause glial differentiation of human neural stem cell. Stem Cell Dev 15:381–389CrossRefGoogle Scholar
  51. 51.
    Sugaya K, Qu K, Sugaya T, Pappas GD (2006) Genetically engineered human mesenchymal stem cells produce Met-Enkephalin at augmented higher levels in vitro. Cell Transplant 15:225–230CrossRefGoogle Scholar
  52. 52.
    Sanchez-Ramos, Raj A (2009) Blood stem cell growth factor reverses memory decline in mice. The randomized, controlled trial. At: Accessed 6 Jun 2012
  53. 53.
    Baier PC, Schindehutte HJ, Thinane K, Flugge G, Fuchs E, Mansouri A, Paulus W, Gruss P, Trenwalder C (2004) Behavioral changes in unilaterally 6-hydroxy-dopamine lesioned rats after transplantation of differentiated mouse embryonic stem cells without morphological integration. Stem Cells 22:396–404CrossRefGoogle Scholar
  54. 54.
    Lindvall O, Bjorklund A (2004) Cell therapy in Parkinson’s disease. NeuroRx 1:382–393CrossRefGoogle Scholar
  55. 55.
    Polgar S, Morris ME, Reilly S, Bilney B, Sanberg PR (2003) Reconstructive neurosurgery for Parkinson’s disease: a systematic review and preliminary meta-analysis. Brain Res Bull 60:1–24CrossRefGoogle Scholar
  56. 56.
    Zheng X, Cai J, Chen J, Luo Y, Zhi-Bing Y, Fotter E, Wang Y, Harvey B, Miura T, Backman C, Chen G-J, Rao MS, Freed WJ (2004) Dopaminergic differentiation of human embryonic stem cells. Stem Cells 22:925–940CrossRefGoogle Scholar
  57. 57.
    Peterson DA (2004) Stem cell therapy for neurological disease and injury. Panminerva Med 46(1):75–80Google Scholar
  58. 58.
    Todorovic V, Markovic D, Milosevic-Jovcic N, Petakov M, Balint B, Colic M, Milenkovic A, Colak I, Jokanovic V, Nikolic N (2008) Matiène æelije zubne pulpe i njihov potencijalni znaèaj u regenerativnoj medicine. Stomatološki glasnik Srbije 55(3):170–179CrossRefGoogle Scholar
  59. 59.
    Anderson KE (2009) Huntington’s disease and related disorders. Psychiatr Clin North Am 28(1):275–290CrossRefGoogle Scholar
  60. 60.
    Hague SM, Klaffke S, Bandmann O (2005) Neurodegenerative disorders: Huntington’s disease and Parkinson’s disease. J Neurol Neurosurg Psychiatry 76:1058–1063CrossRefGoogle Scholar
  61. 61.
    Ross CA, Margolis RL (2001) Huntington’s disease. Clin Neurosci 1:142–152CrossRefGoogle Scholar
  62. 62.
    McMurray CT (2001) Huntington’s disease: new hope for therapeutics. TINS 24:S32–S38Google Scholar
  63. 63.
    Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeats that is expanded and unstable on Huntington’s disease chromosome. Cell 72:971–983CrossRefGoogle Scholar
  64. 64.
    Reddy PH, Williams M, Tagle DA (1999) Recent advances in understanding the pathogenesis of Huntington’s disease. Trends Neurosci 22(6):248–255CrossRefGoogle Scholar
  65. 65.
    Cattaneo E, Rigamonti D, Goffredo D (2001) Loss of normal Huntingtin function: new developments in Huntington’s disease research. Trends Neurosci 24(3):182–188CrossRefGoogle Scholar
  66. 66.
    Cha JJ (2000) Transcriptional dysregulation in Huntington’s disease. Trends Neurosci 23(9):387–392CrossRefGoogle Scholar
  67. 67. (Alexa Keltner Inc). Accessed 6 Jun 2012
  68. 68.
    Feng Z, Jin S, Zupnick A, Hoh J, de Stanchina E, Lowe S, Prives C, Levine AJ (2006) p53 tumor suppressor protein regulates the levels of hunting tin gene expression. Oncogene 25:1–7CrossRefGoogle Scholar
  69. 69.
    Mitchell I, Cooper AJ, Griffiths MR (1999) The selective vulnerability of striatopallidal neurons. Prog Neurobiol 59:691–719CrossRefGoogle Scholar
  70. 70.
    Clement AM, Nguyen MD, Roberts EA et al (2003) Wild-type nonneuronal cells extend survival of SOD1 mutant motor nneurons in ALS mice. Science 302:113–117CrossRefGoogle Scholar
  71. 71.
    Beal MF, Hantraye P (2001) Novel therapies in the search for a cure for Huntington’s disease. Proc Natl Acad Sci USA 98(1):3–4CrossRefGoogle Scholar
  72. 72.
    Jackel RJ, Maragos WF (2000) Neuronal cell death in Huntington’s disease: a potential role for dopamine. Trends Neurosci 23:239–245CrossRefGoogle Scholar
  73. 73.
    Schilling G, Coonfield ML, Ross CA et al (2001) Coenzyme Q10 and ramacemide hydrochloride ameliorate motor deficits in a Huntington’s disease transgenic mouse model. Neurosci Lett 315(3):149–153CrossRefGoogle Scholar
  74. 74.
    Rigamonti D, Sipione S, Goffredo D et al (2001) Huntington’s neuroprotective activity occurs via inhibition of procaspase-9 processing. J Biol Chem 276:14545–14548CrossRefGoogle Scholar
  75. 75.
    Freeman TB, Cicchetti F, Hauser RA et al (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci USA 97(25):13877–13882CrossRefGoogle Scholar
  76. 76.
    Bachoud-Levi AC, Remy P, Nguyen JP et al (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356(9246):1975–1979CrossRefGoogle Scholar
  77. 77.
    Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Madon E, Oliveri G, Ilaria CO, Pastore R, Huttmann MA, Li CL, Duhrsen U (2003) Bone marrow-derived stem cells and ‘plasticity’. Ann Hematol 82(10):599–604CrossRefGoogle Scholar
  78. 78.
    Silani S, Cova L, Corbo M, Ciammola A, Polli E (2004) Stem cell therapy for amyotrophic lateral sclerosis. Lancet 364(9429):200–202CrossRefGoogle Scholar
  79. 79.
    Mazzini L et al (2003) Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord 4:158–161CrossRefGoogle Scholar
  80. 80.
    McDonald JW, Xiao-Zhong L, Qu Y, Su L, Mickey SK, Turestsky D, Gottlieb DI, Choi D (1999) Transplanted embryonic stem cells survive, differentiate and promote recovery in the injured rat spinal cord. Nat Med 5(12):1410–1412CrossRefGoogle Scholar
  81. 81.
    Sigurjonsson AE, Perreault MC, Egeland T, Glover JC (2005) Adult human hematopoietic stem cells produce neurons efficiently in the regenerating chicken embryo spinal cord. Stem Cells 23(3):392–400CrossRefGoogle Scholar
  82. 82.
    Rebuilding the nervous system with stem cells (off the National Institutes of Health Website). Accessed 6 Jun 2012
  83. 83.
    Human neuronal progenitor cells. Accessed 6 Jun 2012
  84. 84.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710CrossRefGoogle Scholar
  85. 85.
    Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11(1):173–189CrossRefGoogle Scholar
  86. 86.
    Kuhn G, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibrolast growth factor-2 have different affects on neural progenitors in the adult Rat brain. J Neurosci 17(15):5820–5829Google Scholar
  87. 87.
    Barnabé-Heider F, Frisén J (2008) Stem cells for spinal cord repair. Stem Cell 3(1):16–24CrossRefGoogle Scholar
  88. 88.
    Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisén J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96(1):25–34CrossRefGoogle Scholar
  89. 89.
    Huber AB, Ehrengruber MU, Schwab ME, Brösamle C (2001) Adenoviral gene transfer to the injured spinal cord of the adult rat. Eur J Neurosci 12(9):3437–3442CrossRefGoogle Scholar
  90. 90.
    Grill R, Gage FH, Murai K, Blesch A, Tuszynski MH (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 17:5560–5572Google Scholar
  91. 91.
    Cristopher ReeveParalysis Foundation. Accessed 6 Jun 2012
  92. 92.
    Yano S, Kuroda S, Lee JB, Shichinohe H, Seki T et al (2005) In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord. J Pathol 205(1):1–13CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Mirjana Pavlovic
    • 1
  • Bela Balint
    • 2
  1. 1.Florida Atlantic UniversityBoca RatonUSA
  2. 2.Military Medical AcademyBelgradeSerbia

Personalised recommendations