Skip to main content

Current Ex-Vivo Gene Therapy Technologies and Future Developments

  • Chapter
  • First Online:
Stem Cell Biology and Regenerative Medicine in Ophthalmology

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1576 Accesses

Abstract

Ex-vivo gene therapy can entail either the replacement or the addition of genes. In gene addition therapy, a therapeutic gene is inserted directly into the host genome, with the abnormal gene remaining intact. In gene replacement therapy, the genome is modified directly. Homologous recombination technology can be used to perform many of these kinds of gene correction. In the past, gene correction therapy has been hampered by the low efficiency of the recombination event. However, recently engineered zinc finger nucleases (ZFNs) were found to have the ability to successfully stimulate homologous recombination by inducing double-strand breaks at specific DNA sites. Another class of enzyme, the transcription activator-like effector nucleases (TALENs), provides an efficient alternative means to induce specific DNA double-strand at breaks. Meanwhile, newly developed gene correction methods using stem cells and induced pluripotent stem (iPS) cells have made gene therapy more feasible in clinical practice. Cells are taken from patients, harvested, and transformed through induction into stem cells, which have the potential to differentiate into a variety of mature cells types for transplant. Further research is needed to develop gene therapy, which may be used in tandem with embryonic and induced pluripotent stem cell therapy, especially to repair preexisting mutations that may be passed on in iPS cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hockemeyer D, Wang H, Kiani S, Lai CS, Gao Q, Cassady JP, Cost GJ, Zhang L, Santiago Y, Miller JC et al (2011) Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29:731–734

    Article  PubMed  CAS  Google Scholar 

  2. Cavazzana-Calvo M, Thrasher A, Mavilio F (2004) The future of gene therapy. Nature 427:779–781

    Article  PubMed  CAS  Google Scholar 

  3. Townes TM (2008) Gene replacement therapy for sickle cell disease and other blood disorders. Am Soc Hematol Educ Program 1:193–196

    Article  Google Scholar 

  4. Thomson JG, Ow DW (2006) Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis 44:465–476

    Article  PubMed  CAS  Google Scholar 

  5. Schwartzberg PL, Goff SP, Robertson EJ (1989) Germ-line transmission of a c-abl mutation produced by targeted gene disruption in ES cells. Science 246:799–803

    Article  PubMed  CAS  Google Scholar 

  6. Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29:64–67

    Article  PubMed  CAS  Google Scholar 

  7. Li MA, Bradley A (2011) Crafting rat genomes with zinc fingers. Nat Biotechnol 29:39–41

    Article  PubMed  Google Scholar 

  8. Chang RLJ, Xu SM, Meneses J, Chan K, Pedersen R, Kan YW (1996) Inactivation of mouse alpha-globin gene by homologous recombination: mouse model of hemoglobin H disease. Blood 88:1846–1851

    PubMed  CAS  Google Scholar 

  9. Chang Tong PL, Wu NL, Yan Y, Ying QL (2010) Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 467:211–215

    Article  PubMed  Google Scholar 

  10. Soldner F, Laganiere J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S et al (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early-onset Parkinson point mutations. Cell 146:318–331

    Article  PubMed  CAS  Google Scholar 

  11. Zwaka TP, Thomson JA (2003) Homologous recombination in human embryonic stem cells. Nat Biotechnol 21:319–321

    Article  PubMed  CAS  Google Scholar 

  12. Ruby KM, Zheng B (2009) Gene targeting in a HUES line of human embryonic stem cells via electroporation. Stem Cells 27:1496–1506

    Article  PubMed  CAS  Google Scholar 

  13. Irion S, Luche H, Gadue P, Fehling HJ, Kennedy M, Keller G (2007) Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol 25:1477–1482

    Article  PubMed  CAS  Google Scholar 

  14. Xue H, Wu S, Papadeas ST, Spusta S, Swistowska AM, MacArthur CC, Mattson MP, Maragakis NJ, Capecchi MR, Rao MS, Zeng X, Liu Y (2009) A targeted neuroglial reporter line generated by homologous recombination in human embryonic stem cells. Stem Cells 27:1836–1846

    Article  PubMed  CAS  Google Scholar 

  15. Davis RP, Ng ES, Costa M, Mossman AK, Sourris K, Elefanty AG, Stanley EG (2008) Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111:1876–1884

    Article  PubMed  CAS  Google Scholar 

  16. Costa M, Dottori M, Sourris K, Jamshidi P, Hatzistavrou T, Davis R, Azzola L, Jackson S, Lim SM, Pera M et al (2007) A method for genetic modification of human embryonic stem cells using electroporation. Nat Protoc 2:792–796

    Article  PubMed  CAS  Google Scholar 

  17. Urbach A, Schuldiner M, Benvenisty N (2004) Modeling for Lesch-Nyhan disease by gene targeting in human embryonic stem cells. Stem Cells 22:635–641

    Article  PubMed  CAS  Google Scholar 

  18. Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578

    Article  PubMed  CAS  Google Scholar 

  19. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973

    Article  PubMed  CAS  Google Scholar 

  20. Song H, Chung SK, Xu Y (2010) Modeling disease in human ESCs using an efficient BAC-based homologous recombination system. Cell Stem Cell 6:80–89

    Article  PubMed  CAS  Google Scholar 

  21. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26:808–816

    Article  PubMed  CAS  Google Scholar 

  22. Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L (2007) Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol 25:1298–1306

    Article  PubMed  CAS  Google Scholar 

  23. Brenneman M, Gimble FS, Wilson JH (1996) Stimulation of intrachromosomal homologous recombination in human cells by electroporation with site-specific endonucleases. Proc Natl Acad Sci U S A 93:3608–3612

    Article  PubMed  CAS  Google Scholar 

  24. Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973

    PubMed  CAS  Google Scholar 

  25. Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106

    PubMed  CAS  Google Scholar 

  26. Donoho G, Jasin M, Berg P (1998) Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol Cell Biol 18:4070–4078

    PubMed  CAS  Google Scholar 

  27. Porteus M, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300:763

    Article  PubMed  Google Scholar 

  28. Morton J, Davis MW, Jorgensen EM, Carroll D (2006) Induction and repair of zinc-finger nuclease-targeted double-strand breaks in Caenorhabditis elegans somatic cells. Proc Natl Acad Sci U S A 103:16370–16375

    Article  PubMed  CAS  Google Scholar 

  29. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26:695–701

    Article  PubMed  CAS  Google Scholar 

  30. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708

    Article  PubMed  CAS  Google Scholar 

  31. Maeder ML, Thibodeau-Beganny S, Sander JD, Voytas DF, Joung JK (2009) Oligomerized pool engineering (OPEN): an ‘open-source’ protocol for making customized zinc-finger arrays. Nat Protoc 4:1471–1501

    Article  PubMed  CAS  Google Scholar 

  32. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y et al (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8:67–69

    Article  PubMed  CAS  Google Scholar 

  33. Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401

    Article  PubMed  CAS  Google Scholar 

  34. Romer P, Recht S, Strauss T, Elsaesser J, Schornack S, Boch J, Wang S, Lahaye T (2010) Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. New Phytol 187:1048–1057

    Article  PubMed  Google Scholar 

  35. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    Article  PubMed  CAS  Google Scholar 

  36. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  PubMed  CAS  Google Scholar 

  37. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82

    Article  PubMed  CAS  Google Scholar 

  38. Doerfler W (1996) Adenoviruses. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas, Galveston

    Google Scholar 

  39. Pacchia A, Mukherjee S, Dougherty JP (2003) Choice and use of appropriate packaging cell types. In: Federico M (ed) Lentivirus gene engineering protocols, 3rd edn. Humana Press, Totowa

    Google Scholar 

  40. Whitley RJ (1996) Herpesviruses. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas, Galveston

    Google Scholar 

  41. Muzyczka N (1992) Use of adeno-associated virus as a general transduction vector for mammalian cells. Curr Top Microbiol Immunol 158:97–129

    Article  PubMed  CAS  Google Scholar 

  42. Choi VW, Asokan A, Haberman RA, Samulski RJ (2007) Production of recombinant adeno-associated viral vectors for in vitro and in vivo use. Curr Protoc Mol Biol. 16.25.11–16.25.24

    Google Scholar 

  43. Lynch CM (1999) Generation of recombinant adeno-associated viruses for delivery of genes into vascular cells. In: Baker S (ed) Vascular disease: molecular biology and gene therapy protocols. Humana Press, Totowa

    Google Scholar 

  44. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  PubMed  CAS  Google Scholar 

  45. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A et al (2011) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  Google Scholar 

  46. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, et al (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31:294–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Hsien Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Su, CH., Erol, D. (2013). Current Ex-Vivo Gene Therapy Technologies and Future Developments. In: Tsang, S. (eds) Stem Cell Biology and Regenerative Medicine in Ophthalmology. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5493-9_10

Download citation

Publish with us

Policies and ethics