Skip to main content

The Eye as a Target Organ for Stem Cell Therapy

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Retinal degenerations are a heterogeneous group of disorders that are characterized by progressive cellular dysfunction, cellular disarray, and eventually cell death. Early in the course of disease therapeutic intervention consists of pharmaceutical treatment to prevent cell death or gene therapy to correct the underlying mutation. Due to the nature of pathologies involving these disorders, particularly in late stage of disease, cell replacement therapy or electric stimulation of remaining cells by artificial retinal prosthesis is the only viable option. Stem cell therapies for retinal degenerative diseases such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP) are a promising therapeutic option and will require replacement of lost photoreceptor cells and retinal pigment epithelium (RPE). Current clinical trials are underway to evaluate the potential of stem cell therapy in humans. The use of induced pluripotent stem (iPS) cells hold great promise as a potential reservoir of cells for the treatment of retinal disorders as well as a clinical tool to help understand disease pathology. Advances in stem cell technology will translate these therapies into viable clinical options for the treatment of retinal degenerative diseases and other disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Reference

  1. Dewan A et al (2006) HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314(5801):989–992

    Article  PubMed  CAS  Google Scholar 

  2. Yang Z et al (2006) A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 314(5801):992–993

    Article  PubMed  CAS  Google Scholar 

  3. Maller J et al (2006) Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of age-related macular degeneration. Nat Genet 38(9):1055–1059

    Article  PubMed  CAS  Google Scholar 

  4. DeWan A, Bracken MB, Hoh J (2007) Two genetic pathways for age-related macular degeneration. Curr Opin Genet Dev 17(3):228–233

    Article  PubMed  CAS  Google Scholar 

  5. Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368(9549):1795–1809

    Article  PubMed  CAS  Google Scholar 

  6. Hamel C (2006) Retinitis pigmentosa. Orphanet J Rare Dis 1:40

    Article  PubMed  Google Scholar 

  7. Wright AF et al (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11(4):273–284

    Article  PubMed  CAS  Google Scholar 

  8. Maubaret C, Hamel C (2005) Genetics of retinitis pigmentosa: metabolic classification and phenotype/genotype correlations. J Fr Ophtalmol 28(1):71–92

    Article  PubMed  CAS  Google Scholar 

  9. Haim M (1992) Prevalence of retinitis pigmentosa and allied disorders in Denmark. II. Systemic involvement and age at onset. Acta Ophthalmol (Copenh) 70(4):417–426

    Article  CAS  Google Scholar 

  10. Berson EL (1993) Retinitis pigmentosa. The Friedenwald lecture. Invest Ophthalmol Vis Sci 34(5):1659–1676

    PubMed  CAS  Google Scholar 

  11. Phelan JK, Bok D (2000) A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. Mol Vis 6:116–124

    PubMed  CAS  Google Scholar 

  12. Wang Q et al (2001) Update on the molecular genetics of retinitis pigmentosa. Ophthalmic Genet 22(3):133–154

    Article  PubMed  CAS  Google Scholar 

  13. Berson EL et al (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111(6):761–772

    Article  PubMed  CAS  Google Scholar 

  14. Moldow B et al (1999) Effects of acetazolamide on passive and active transport of fluorescein across the normal BRB. Invest Ophthalmol Vis Sci 40(8):1770–1775

    PubMed  CAS  Google Scholar 

  15. Daiger SP, Bowne SJ, Sullivan LS (2007) Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol 125(2):151–158

    Article  PubMed  CAS  Google Scholar 

  16. Fishman GA et al (1981) Color vision defects in retinitis pigmentosa. Ann Ophthalmol 13(5):609–618

    PubMed  CAS  Google Scholar 

  17. Wang DY et al (2005) Gene mutations in retinitis pigmentosa and their clinical implications. Clin Chim Acta 351(1–2):5–16

    Article  PubMed  CAS  Google Scholar 

  18. Williams DS (2008) Usher syndrome: animal models, retinal function of Usher proteins, and prospects for gene therapy. Vision Res 48(3):433–441

    Article  PubMed  CAS  Google Scholar 

  19. Fishman GA et al (2007) Natural course of visual field loss in patients with Type 2 Usher syndrome. Retina 27(5):601–608

    Article  PubMed  Google Scholar 

  20. Fishman GA et al (1983) Usher’s syndrome. Ophthalmic and neuro-otologic findings suggesting genetic heterogeneity. Arch Ophthalmol 101(9):1367–1374

    Article  PubMed  CAS  Google Scholar 

  21. Pakarinen L et al (1995) Usher’s syndrome type 3 in Finland. Laryngoscope 105(6):613–617

    Article  PubMed  CAS  Google Scholar 

  22. Herse P (2005) Retinitis pigmentosa: visual function and multidisciplinary management. Clin Exp Optom 88(5):335–350

    Article  PubMed  Google Scholar 

  23. Hims MM, Diager SP, Inglehearn CF (2003) Retinitis pigmentosa: genes, proteins and prospects. Dev Ophthalmol 37:109–125

    Article  PubMed  CAS  Google Scholar 

  24. Rivolta C et al (2002) Retinitis pigmentosa and allied diseases: numerous diseases, genes, and inheritance patterns. Hum Mol Genet 11(10):1219–1227

    Article  PubMed  CAS  Google Scholar 

  25. Massof RW, Finkelstein D (1993) Supplemental vitamin A retards loss of ERG amplitude in retinitis pigmentosa. Arch Ophthalmol 111(6):751–754

    Article  PubMed  CAS  Google Scholar 

  26. Marmor MF (1993) A randomized trial of vitamin A and vitamin E supplementation for retinitis pigmentosa. Arch Ophthalmol 111(11):1460–1461 (author reply 1463–1465)

    Google Scholar 

  27. Penniston KL, Tanumihardjo SA (2006) The acute and chronic toxic effects of vitamin A. Am J Clin Nutr 83(2):191–201

    PubMed  CAS  Google Scholar 

  28. Allen LH, Haskell M (2002) Estimating the potential for vitamin A toxicity in women and young children. J Nutr 132(9 Suppl):2907S–2919S

    PubMed  CAS  Google Scholar 

  29. Russell RM (2000) The vitamin A spectrum: from deficiency to toxicity. Am J Clin Nutr 71(4):878–884

    PubMed  CAS  Google Scholar 

  30. Humayun MS et al (1996) Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 114(1):40–46

    Article  PubMed  CAS  Google Scholar 

  31. Radu RA et al (2005) Reductions in serum vitamin A arrest accumulation of toxic retinal fluorophores: a potential therapy for treatment of lipofuscin-based retinal diseases. Invest Ophthalmol Vis Sci 46(12):4393–4401

    Article  PubMed  Google Scholar 

  32. Aleman TS et al (2001) Macular pigment and lutein supplementation in retinitis pigmentosa and Usher syndrome. Invest Ophthalmol Vis Sci 42(8):1873–1881

    PubMed  CAS  Google Scholar 

  33. Birch DG (2005) A randomized placebo-controlled clinical trial of docosahexaenoic acid (DHA) supplementation for X-linked retinitis pigmentosa. Retina 25(8 Suppl):S52–S54

    Article  PubMed  Google Scholar 

  34. Berson EL et al (2004) Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. Arch Ophthalmol 122(9):1306–1314

    Article  PubMed  CAS  Google Scholar 

  35. Berson EL et al (2004) Clinical trial of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment. Arch Ophthalmol 122(9):1297–1305

    Article  PubMed  CAS  Google Scholar 

  36. Berson EL (1980) Light deprivation and retinitis pigmentosa. Vision Res 20(12):1179–1184

    Article  PubMed  CAS  Google Scholar 

  37. Potok A (1980) Ordinary daylight: portrait of an artist going blind. Holt, Rinehart, and Winston, New York

    Google Scholar 

  38. Biro I (1939) Therapeutic experiments in cases of retinitis pigmentosa. Br J Ophthalmol 23(5):332–342

    Article  PubMed  CAS  Google Scholar 

  39. Gordon DM (1947) The treatment of retinitis pigmentosa with special reference to the Filatov method. Am J Ophthalmol 30(5):565–580

    PubMed  CAS  Google Scholar 

  40. Faktorovich EG et al (1992) Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat. J Neurosci 12(9):3554–3567

    PubMed  CAS  Google Scholar 

  41. Mansour-Robaey S et al (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proc Natl Acad Sci USA 91(5):1632–1636

    Article  PubMed  CAS  Google Scholar 

  42. Mahmoud TH et al (2003) Lensectomy and vitrectomy decrease the rate of photoreceptor loss in rhodopsin P347L transgenic pigs. Graefes Arch Clin Exp Ophthalmol 241(4):298–308

    Article  PubMed  Google Scholar 

  43. Silverman MS, Hughes SE (1990) Photoreceptor rescue in the RCS rat without pigment epithelium transplantation. Curr Eye Res 9(2):183–191

    Article  PubMed  CAS  Google Scholar 

  44. Wierzbicki AS et al (2002) Refsum’s disease: a peroxisomal disorder affecting phytanic acid alpha-oxidation. J Neurochem 80(5):727–735

    Article  PubMed  CAS  Google Scholar 

  45. Wills AJ, Manning NJ, Reilly MM (2001) Refsum’s disease. QJM 94(8):403–406

    Article  PubMed  CAS  Google Scholar 

  46. Weinstein R (1999) Phytanic acid storage disease (Refsum’s disease): clinical characteristics, pathophysiology and the role of therapeutic apheresis in its management. J Clin Apher 14(4):181–184

    Article  PubMed  CAS  Google Scholar 

  47. Sidler AK, Huston BM, Thomas DB (1997) Pathological case of the month. Abetalipoproteinemia (Bassen-Kornzweig syndrome). Arch Pediatr Adolesc Med 151(12):1265–1266

    Article  PubMed  CAS  Google Scholar 

  48. Kornzweig AL (1970) Bassen-Kornzweig syndrome. Present status. J Med Genet 7(3):271–276

    Article  PubMed  CAS  Google Scholar 

  49. Weber M et al (1988) [Pigmentary retinopathy of Bassen-Kornzweig syndrome. Clinical, biological and electrophysiological study of 2 cases]. Bull Soc Ophtalmol Fr 88(3):423–426

    Google Scholar 

  50. Second Sight Medical Products, I. Second Sight. 2011. Accessed 2012. http://2-sight.eu/en/home-en

  51. Ahuja AK et al (2011) Blind subjects implanted with the Argus II retinal prosthesis are able to improve performance in a spatial-motor task. Br J Ophthalmol 95(4):539–543

    Article  PubMed  CAS  Google Scholar 

  52. Humayun MS et al (2012) Interim results from the International Trial of Second Sight’s visual prosthesis. Ophthalmology 119(4):779–788

    Article  PubMed  Google Scholar 

  53. Defoe DM et al (1994) Membrane polarity of the Na(+)-K+ pump in primary cultures of Xenopus retinal pigment epithelium. Exp Eye Res 59(5):587–596

    Article  PubMed  CAS  Google Scholar 

  54. Tuo J et al (2012) Genetics of immunological and inflammatory components in age-related macular degeneration. Ocul Immunol Inflamm 20(1):27–36

    Article  PubMed  CAS  Google Scholar 

  55. Prasad PS, Schwartz SD, Hubschman JP (2010) Age-related macular degeneration: current and novel therapies. Maturitas 66(1):46–50

    Article  PubMed  CAS  Google Scholar 

  56. Friedman DS et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572

    Article  PubMed  Google Scholar 

  57. Bressler NM, Bressler SB, Fine SL (1988) Age-related macular degeneration. Surv Ophthalmol 32(6):375–413

    Article  PubMed  CAS  Google Scholar 

  58. Haddad S et al (2006) The genetics of age-related macular degeneration: a review of progress to date. Surv Ophthalmol 51(4):316–363

    Article  PubMed  Google Scholar 

  59. Klein RJ et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389

    Article  PubMed  CAS  Google Scholar 

  60. Haines JL et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720):419–421

    Article  PubMed  CAS  Google Scholar 

  61. Edwards AO et al (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308(5720):421–424

    Article  PubMed  CAS  Google Scholar 

  62. Gold B et al (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38(4):458–462

    Article  PubMed  CAS  Google Scholar 

  63. Chopdar A, Chakravarthy U, Verma D (2003) Age related macular degeneration. BMJ 326(7387):485–488

    Article  PubMed  Google Scholar 

  64. Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358(24):2606–2617

    Article  PubMed  CAS  Google Scholar 

  65. Ferris FL 3rd, Fine SL, Hyman L (1984) Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 102(11):1640–1642

    Article  PubMed  Google Scholar 

  66. Zhang K et al (2011) Ciliary neurotrophic factor delivered by encapsulated cell intraocular implants for treatment of geographic atrophy in age-related macular degeneration. Proc Natl Acad Sci USA 108(15):6241–6245

    Article  PubMed  CAS  Google Scholar 

  67. Rohrer B et al (2010) In: Lambris JD, Adamis AP (eds) A targeted inhibitor of the complement alternative pathway reduces RPE injury and angiogenesis in models of age-related macular degeneration inflammation and retinal disease: complement biology and pathology. Springer, New York, pp. 137–149

    Google Scholar 

  68. Landa G et al (2008) Weekly vaccination with Copaxone (Glatiramer Acetate) as a potential therapy for dry age-related macular degeneration. Curr Eye Res 33(11–12):1011–1013

    Article  PubMed  CAS  Google Scholar 

  69. Wong WT et al (2010) Treatment of geographic atrophy by the topical administration of OT-551: results of a phase II clinical trial. Invest Ophthalmol Vis Sci 51(12):6131–6139

    Article  PubMed  Google Scholar 

  70. Biarnes M et al (2011) Update on geographic atrophy in age-related macular degeneration. Optom Vis Sci 88(7):881–889

    Article  PubMed  Google Scholar 

  71. Smith W et al (2001) Risk factors for age-related macular degeneration: pooled findings from three continents. Ophthalmology 108(4):697–704

    Article  PubMed  CAS  Google Scholar 

  72. Yannuzzi LA et al (2012) Retinal angiomatous proliferation in age-related macular degeneration. Retina 32(Suppl 1):416–434

    PubMed  Google Scholar 

  73. Hartnett ME et al (1996) Deep retinal vascular anomalous complexes in advanced age-related macular degeneration. Ophthalmology 103(12):2042–2053

    PubMed  CAS  Google Scholar 

  74. Jager RD et al (2004) Risks of intravitreous injection: a comprehensive review. Retina 24(5):676–698

    Article  PubMed  Google Scholar 

  75. Berger AS, Kaplan HJ (1992) Clinical experience with the surgical removal of subfoveal neovascular membranes. Short-term postoperative results. Ophthalmology 99(6):969–975 (discussion 975–976)

    Google Scholar 

  76. Thomas MA, Kaplan HJ (1991) Surgical removal of subfoveal neovascularization in the presumed ocular histoplasmosis syndrome. Am J Ophthalmol 111(1):1–7

    PubMed  CAS  Google Scholar 

  77. Thomas MA et al (1992) Surgical management of subfoveal choroidal neovascularization. Ophthalmology 99(6):952–968 (discussion 975–976)

    Google Scholar 

  78. Lambert HM et al (1992) Surgical excision of subfoveal neovascular membranes in age-related macular degeneration. Am J Ophthalmol 113(3):257–262

    PubMed  CAS  Google Scholar 

  79. Coscas G, Meunier I (1993) Surgery of macular neovascular subretinal membranes. J Fr Ophtalmol 16(11):633–641

    PubMed  CAS  Google Scholar 

  80. Hsiue GH, Lai JY, Lin PK (2002) Absorbable sandwich-like membrane for retinal-sheet transplantation. J Biomed Mater Res 61(1):19–25

    Article  PubMed  CAS  Google Scholar 

  81. Tezel TH, Del Priore LV, Kaplan HJ (2004) Reengineering of aged Bruch’s membrane to enhance retinal pigment epithelium repopulation. Invest Ophthalmol Vis Sci 45(9):3337–3348

    Article  PubMed  Google Scholar 

  82. de Juan E Jr, Machemer R (1988) Vitreous surgery for hemorrhagic and fibrous complications of age-related macular degeneration. Am J Ophthalmol 105(1):25–29

    Google Scholar 

  83. (2000) Submacular surgery trials randomized pilot trial of laser photocoagulation versus surgery for recurrent choroidal neovascularization secondary to age-related macular degeneration: II. Quality of life outcomes submacular surgery trials pilot study report number 2. Am J Ophthalmol 130(4):408–418

    Google Scholar 

  84. Bressler NM et al (2000) Submacular surgery trials randomized pilot trial of laser photocoagulation versus surgery for recurrent choroidal neovascularization secondary to age-related macular degeneration: I. Ophthalmic outcomes submacular surgery trials pilot study report number 1. Am J Ophthalmol 130(4):387–407

    Google Scholar 

  85. Algvere PV et al (1994) Transplantation of fetal retinal pigment epithelium in age-related macular degeneration with subfoveal neovascularization. Graefes Arch Clin Exp Ophthalmol 232(12):707–716

    Article  PubMed  CAS  Google Scholar 

  86. Berger AS et al (2003) Photoreceptor transplantation in retinitis pigmentosa: short-term follow-up. Ophthalmology 110(2):383–391

    Article  PubMed  Google Scholar 

  87. Binder S et al (2002) Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am J Ophthalmol 133(2):215–225

    Article  PubMed  Google Scholar 

  88. Del Priore LV (2005) Effect of sham surgery on retinal function after subretinal transplantation of the artificial silicone retina. Arch Ophthalmol 123(8):1156 (author reply 1156–1157)

    Google Scholar 

  89. Del Priore LV et al (2001) Retinal pigment epithelial cell transplantation after subfoveal membranectomy in age-related macular degeneration: clinicopathologic correlation. Am J Ophthalmol 131(4):472–480

    Article  PubMed  Google Scholar 

  90. Del Priore LV, Tezel TH, Kaplan HJ (2004) Survival of allogeneic porcine retinal pigment epithelial sheets after subretinal transplantation. Invest Ophthalmol Vis Sci 45(3):985–992

    Article  PubMed  Google Scholar 

  91. Kaplan HJ et al (1999) Retinal transplantation. Chem Immunol 73:207–219

    Article  PubMed  CAS  Google Scholar 

  92. Kaplan HJ et al (1997) Human photoreceptor transplantation in retinitis pigmentosa. A safety study. Arch Ophthalmol 115(9):1168–1172

    Article  PubMed  CAS  Google Scholar 

  93. Kaplan HJ et al (1998) RPE transplantation in age-related macular degeneration. In: First International conference on new developments in the treatment of age-related macular degeneration, Gardone, Italy

    Google Scholar 

  94. Lois N (2002) Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization. Am J Ophthalmol 134(3):468 (author reply 468–469)

    Google Scholar 

  95. Peyman GA et al (1991) A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surg 22(2):102–108

    PubMed  CAS  Google Scholar 

  96. Stur M (2002) Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization. Am J Ophthalmol 134(3):469–470 (author reply 470–472)

    Google Scholar 

  97. Abe T et al (2000) Autologous iris pigment epithelial cell transplantation in monkey subretinal region. Curr Eye Res 20(4):268–275

    Article  PubMed  CAS  Google Scholar 

  98. Abe T et al (1999) Cytokine gene expression after subretinal transplantation. Tohoku J Exp Med 189(3):179–189

    Article  PubMed  CAS  Google Scholar 

  99. Abe T et al (1999) Functional analysis after auto iris pigment epithelial cell transplantation in patients with age-related macular degeneration. Tohoku J Exp Med 189(4):295–305

    Article  PubMed  CAS  Google Scholar 

  100. Crafoord S et al (2001) Experimental transplantation of autologous iris pigment epithelial cells to the subretinal space. Acta Ophthalmol Scand 79(5):509–514

    Article  PubMed  CAS  Google Scholar 

  101. Crafoord S et al (2002) Photoreceptor survival in transplantation of autologous iris pigment epithelial cells to the subretinal space. Acta Ophthalmol Scand 80(4):387–394

    Article  PubMed  Google Scholar 

  102. Hojo M et al (2004) Photoreceptor protection by iris pigment epithelial transplantation transduced with AAV-mediated brain-derived neurotrophic factor gene. Invest Ophthalmol Vis Sci 45(10):3721–3726

    Article  PubMed  Google Scholar 

  103. Rezai KA et al (1997) Iris pigment epithelium transplantation. Graefes Arch Clin Exp Ophthalmol 235(9):558–562

    Article  PubMed  CAS  Google Scholar 

  104. Schraermeyer U et al (2000) Transplantation of iris pigment epithelium into the choroid slows down the degeneration of photoreceptors in the RCS rat. Graefes Arch Clin Exp Ophthalmol 238(12):979–984

    Article  PubMed  CAS  Google Scholar 

  105. Jordan JF et al (2002) Iris pigment epithelial cells transplanted into the vitreous accumulate at the optic nerve head. Graefes Arch Clin Exp Ophthalmol 240(5):403–407

    Article  PubMed  Google Scholar 

  106. Thumann G et al (2000) Transplantation of autologous iris pigment epithelium after removal of choroidal neovascular membranes. Arch Ophthalmol 118(10):1350–1355

    Article  PubMed  CAS  Google Scholar 

  107. Thumann G et al (1999) Transplantation of autologous iris pigment epithelium to the subretinal space in rabbits. Transplantation 68(2):195–201

    Article  PubMed  CAS  Google Scholar 

  108. Williams KA (1999) Transplantation of autologous iris pigment epithelial cells as a treatment for age-related macular degeneration? Transplantation 68(2):171–172

    Article  PubMed  CAS  Google Scholar 

  109. Aisenbrey S, Bartz-Schmidt U (2003) Macular translocation with 360-degree retinotomy for management of age-related macular degeneration with subfoveal choroidal neovascularization. Am J Ophthalmol 135(5):748–749 (author reply 749)

    Google Scholar 

  110. Chang AA et al (2003) Limited macular translocation for subfoveal choroidal neovascularization in age-related macular degeneration. Clin Experiment Ophthalmol 31(2):103–109

    Article  PubMed  Google Scholar 

  111. D’Amico DJ, Friberg TR (2001) Limited inferior macular translocation for the treatment of subfoveal choroidal neovascularization secondary to age-related macular degeneration. Am J Ophthalmol 132(2):289–290

    Article  PubMed  Google Scholar 

  112. Fujii GY et al (2003) Limited macular translocation for the management of subfoveal choroidal neovascularization after photodynamic therapy. Am J Ophthalmol 135(1):109–112

    Article  PubMed  Google Scholar 

  113. Fujii GY et al (2002) Limited macular translocation: current concepts. Ophthalmol Clin North Am 15(4):425–436

    Article  PubMed  Google Scholar 

  114. Fujii GY et al (2001) Initial experience of inferior limited macular translocation for subfoveal choroidal neovascularization resulting from causes other than age-related macular degeneration. Am J Ophthalmol 131(1):90–100

    Article  PubMed  CAS  Google Scholar 

  115. Glacet-Bernard A et al (2001) Translocation of the macula for management of subfoveal choroidal neovascularization: comparison of results in age-related macular degeneration and degenerative myopia. Am J Ophthalmol 131(1):78–89

    Article  PubMed  CAS  Google Scholar 

  116. Hamelin N et al (2002) Surgical treatment of subfoveal neovascularization in myopia: macular translocation vs surgical removal. Am J Ophthalmol 133(4):530–536

    Article  PubMed  Google Scholar 

  117. Lewis H et al (1999) Macular translocation for subfoveal choroidal neovascularization in age-related macular degeneration: a prospective study. Am J Ophthalmol 128(2):135–146

    Article  PubMed  CAS  Google Scholar 

  118. Ng EW et al (2004) Macular translocation in patients with recurrent subfoveal choroidal neovascularization after laser photocoagulation for nonsubfoveal choroidal neovascularization. Ophthalmology 111(10):1889–1893

    Article  PubMed  Google Scholar 

  119. Ohji M et al (2001) Comparison of three techniques of foveal translocation in patients with subfoveal choroidal neovascularization resulting from age-related macular degeneration. Am J Ophthalmol 132(6):888–896

    Article  PubMed  CAS  Google Scholar 

  120. Park CH, Toth CA (2003) Macular translocation surgery with 360-degree peripheral retinectomy following ocular photodynamic therapy of choroidal neovascularization. Am J Ophthalmol 136(5):830–835

    Article  PubMed  Google Scholar 

  121. Pawlak D et al (2004) Limited macular translocation compared with photodynamic therapy in the management of subfoveal choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 137(5):880–887

    Article  PubMed  Google Scholar 

  122. Pertile G, Claes C (2002) Macular translocation with 360 degree retinotomy for management of age-related macular degeneration with subfoveal choroidal neovascularization. Am J Ophthalmol 134(4):560–565

    Article  PubMed  Google Scholar 

  123. Pieramici DJ et al (2000) Limited inferior macular translocation for the treatment of subfoveal choroidal neovascularization secondary to age-related macular degeneration. Am J Ophthalmol 130(4):419–428

    Article  PubMed  CAS  Google Scholar 

  124. Roth DB, Estafanous M, Lewis H (2001) Macular translocation for subfoveal choroidal neovascularization in angioid streaks. Am J Ophthalmol 131(3):390–392

    Article  PubMed  CAS  Google Scholar 

  125. Terasaki H (2001) Rescue of retinal function by macular translocation surgery in age-related macular degeneration and other diseases with subfoveal choroidal neovascularization. Nagoya J Med Sci 64(1–2):1–9

    PubMed  CAS  Google Scholar 

  126. Stanga PE et al (2001) Retinal pigment epithelium translocation and central visual function in age related macular degeneration: preliminary results. Int Ophthalmol 23(4–6):297–307

    Article  PubMed  CAS  Google Scholar 

  127. Stanga PE et al (2002) Retinal pigment epithelium translocation after choroidal neovascular membrane removal in age-related macular degeneration. Ophthalmology 109(8):1492–1498

    Article  PubMed  Google Scholar 

  128. Grossniklaus HE et al (1994) Clinicopathologic features of surgically excised choroidal neovascular membranes. Ophthalmology 101(6):1099–1111

    PubMed  CAS  Google Scholar 

  129. Del Priore LV et al (1993) Experimental and surgical aspects of retinal pigment epithelial cell transplantation. Eur J Implant Ref Surg 5:128–132

    Google Scholar 

  130. Rosa RH, Thomas MA, Green WR (1996) Clinicopathologic correlation of submacular membranectomy with retention of good vision in a patient with age-related macular degeneration. Arch Ophthalmol 114(4):480–487

    Article  PubMed  CAS  Google Scholar 

  131. Hsu JK et al (1995) Clinicopathologic studies of an eye after submacular membranectomy for choroidal neovascularization. Retina 15(1):43–52

    Article  PubMed  CAS  Google Scholar 

  132. Del Priore LV et al (2002) Extracellular matrix ligands promote RPE attachment to inner Bruch’s membrane. Curr Eye Res 25(2):79–89

    Article  PubMed  Google Scholar 

  133. Del Priore LV, Kaplan HJ, Berger A (1997) Retinal pigment epithelial transplantation in the management of subfoveal choroidal neovascularization. Semin Ophthalmol 12:45–55

    Article  Google Scholar 

  134. Akduman L, Del Priore LV, Kaplan HJ (1998) Spontaneous resolution of retinal detachment occurring after macular hole surgery. Arch Ophthalmol 116(4):465–467

    PubMed  CAS  Google Scholar 

  135. Del Priore LV, Tezel TH (1998) Reattachment rate of human retinal pigment epithelium to layers of human Bruch’s membrane. Arch Ophthalmol 116(3):335–341

    PubMed  Google Scholar 

  136. Del Priore LV et al (1999) Retinal pigment epithelial transplantation in exudative age-related macular degeneration: what do in vivo and in vitro studies teach us? In: Coscas G, Cardillo F, Piccolino (eds) Retinal pigment epithelium and macular diseases, Documenta Ophthalmologica proceedings series 62. Kluwer Academic, Boston, pp. 125–134

    Google Scholar 

  137. Tezel TH, Del Priore LV (1997) Reattachment to a substrate prevents apoptosis of human retinal pigment epithelium. Graefe’s Arch Clin Exp Ophthalmol (Albrecht von Graefes Archiv fèur klinische und experimentelle Ophthalmologie) 235(1):41–47

    Google Scholar 

  138. Tezel TH, Del Priore LV (1999) Repopulation of different layers of host human Bruch’s membrane by retinal pigment epithelial cell grafts. Invest Ophthalmol Vis Sci 40(3):767–774

    PubMed  CAS  Google Scholar 

  139. Tezel TH, Del Priore LV, Kaplan HJ (1997) Harvest and storage of adult human retinal pigment epithelial sheets. Curr Eye Res 16(8):802–809

    Article  PubMed  CAS  Google Scholar 

  140. Tezel TH, Bora NS, Kaplan HJ (2004) Pathogenesis of age-related macular degeneration. Trends Mol Med 10(9):417–420

    Article  PubMed  CAS  Google Scholar 

  141. Schwartz SD et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379(9817):713–720

    Article  PubMed  CAS  Google Scholar 

  142. Binder S et al (2004) Outcome of transplantation of autologous retinal pigment epithelium in age-related macular degeneration: a prospective trial. Invest Ophthalmol Vis Sci 45(11):4151–4160

    Article  PubMed  Google Scholar 

  143. MacLaren RE et al (2005) Long-term results of submacular surgery combined with macular translocation of the retinal pigment epithelium in neovascular age-related macular degeneration. Ophthalmology 112(12):2081–2087

    Article  PubMed  Google Scholar 

  144. Lappas A et al (2000) Iris pigment epithelial cell translocation in exudative age-related macular degeneration. A pilot study in patients. Graefes Arch Clin Exp Ophthalmol 238(8):631–641

    Article  PubMed  CAS  Google Scholar 

  145. Schmitz-Valckenberg S et al (2009) Fundus autofluorescence and progression of age-related macular degeneration. Surv Ophthalmol 54(1):96–117

    Article  PubMed  Google Scholar 

  146. Schmitz-Valckenberg S et al (2008) Fundus autofluorescence imaging: review and perspectives. Retina 28(3):385–409

    Article  PubMed  Google Scholar 

  147. Murdaugh LS et al (2010) Age-related accumulation of 3-nitrotyrosine and nitro-A2E in human Bruch’s membrane. Exp Eye Res 90(5):564–571

    Article  PubMed  CAS  Google Scholar 

  148. Gobel AP et al (2011) Imaging geographic atrophy in age-related macular degeneration. Ophthalmologica 226(4):182–190

    Article  PubMed  Google Scholar 

  149. Owens SL (1996) Indocyanine green angiography. Br J Ophthalmol 80(3):263–266

    Article  PubMed  CAS  Google Scholar 

  150. Stanga PE, Lim JI, Hamilton P (2003) Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update. Ophthalmology 110(1):15–21 (quiz 22–23)

    Google Scholar 

  151. Yannuzzi LA et al (1992) Digital indocyanine green videoangiography and choroidal neovascularization. Retina 12(3):191–223

    Article  PubMed  CAS  Google Scholar 

  152. Coscas F et al (2012) Combined fluorescein angiography and spectral-domain optical coherence tomography imaging of classic choroidal neovascularization secondary to age-related macular degeneration before and after intravitreal ranibizumab injections. Retina 32(6):1069–76

    Article  PubMed  CAS  Google Scholar 

  153. Hee MR et al (1996) Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103(8):1260–1270

    PubMed  CAS  Google Scholar 

  154. Thomas D, Duguid G (2004) Optical coherence tomography–a review of the principles and contemporary uses in retinal investigation. Eye (Lond) 18(6):561–570

    Article  CAS  Google Scholar 

  155. Rohrschneider K, Bultmann S, Springer C (2008) Use of fundus perimetry (microperimetry) to quantify macular sensitivity. Prog Retin Eye Res 27(5):536–548

    Article  PubMed  Google Scholar 

  156. Piao CH et al (2000) Multifocal electroretinogram in occult macular dystrophy. Invest Ophthalmol Vis Sci 41(2):513–517

    PubMed  CAS  Google Scholar 

  157. Kondo M et al (1995) Clinical evaluation of multifocal electroretinogram. Invest Ophthalmol Vis Sci 36(10):2146–2150

    PubMed  CAS  Google Scholar 

  158. Wang NK et al (2010) Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 89(8):911–919

    Article  PubMed  Google Scholar 

  159. Singh MS, MacLaren RE (2011) Stem cells as a therapeutic tool for the blind: biology and future prospects. Proc Biol Sci 278(1721):3009–3016

    Article  PubMed  CAS  Google Scholar 

  160. Huang Y, Enzmann V, Ildstad ST (2011) Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Rev 7(2):434–445

    Article  PubMed  Google Scholar 

  161. Song MK, Lui GM (1990) Propagation of fetal human RPE cells: preservation of original culture morphology after serial passage. J Cell Physiol 143(1):196–203

    Article  PubMed  CAS  Google Scholar 

  162. Gamm DM et al (2008) Regulation of prenatal human retinal neurosphere growth and cell fate potential by retinal pigment epithelium and Mash1. Stem Cells 26(12):3182–3193

    Article  PubMed  CAS  Google Scholar 

  163. Maminishkis A et al (2006) Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. Invest Ophthalmol Vis Sci 47(8):3612–3624

    Article  PubMed  Google Scholar 

  164. Schmeer CW, Wohl SG, Isenmann S (2012) Cell-replacement therapy and neural repair in the retina. Cell Tissue Res 349(1):363–74

    Article  PubMed  CAS  Google Scholar 

  165. West EL et al (2009) Cell transplantation strategies for retinal repair. Prog Brain Res 175:3–21

    Article  PubMed  CAS  Google Scholar 

  166. Bhatia B et al (2010) Adult retinal stem cells revisited. Open Ophthalmol J 4:30–38

    Article  PubMed  CAS  Google Scholar 

  167. Gong J et al (2008) Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Exp Eye Res 86(6):957–965

    Article  PubMed  CAS  Google Scholar 

  168. Tibbetts MD et al (2012) Stem cell therapy for retinal disease. Curr Opin Ophthalmol 23(3):226–234

    Article  PubMed  Google Scholar 

  169. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  170. Okita K et al (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953

    Article  PubMed  CAS  Google Scholar 

  171. Yamanaka S (2009) A fresh look at iPS cells. Cell 137(1):13–17

    Article  PubMed  CAS  Google Scholar 

  172. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  173. Lamba DA et al (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5(1):e8763

    Article  PubMed  CAS  Google Scholar 

  174. Tucker BA et al (2011) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 6(4):e18992

    Article  PubMed  CAS  Google Scholar 

  175. Mellough CB et al (2012) Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells 30(4):673–686

    Article  PubMed  CAS  Google Scholar 

  176. Song M et al (2012) Induced pluripotent stem cell research: a revolutionary approach to face the challenges in drug screening. Arch Pharm Res 35(2):245–260

    Article  PubMed  CAS  Google Scholar 

  177. Jin ZB et al (2009) Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges. J Genet 88(4):417–424

    Article  PubMed  Google Scholar 

  178. Zhang X, Bok D (1998) Transplantation of retinal pigment epithelial cells and immune response in the subretinal space. Invest Ophthalmol Vis Sci 39(6):1021–1027

    PubMed  CAS  Google Scholar 

  179. Lai CC et al (2000) Local immunosuppression prolongs survival of RPE xenografts labeled by retroviral gene transfer. Invest Ophthalmol Vis Sci 41(10):3134–3141

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucian V. Del Priore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fields, M.A., Hwang, J., Gong, J., Cai, H., Del Priore, L.V. (2013). The Eye as a Target Organ for Stem Cell Therapy. In: Tsang, S. (eds) Stem Cell Biology and Regenerative Medicine in Ophthalmology. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5493-9_1

Download citation

Publish with us

Policies and ethics