Skip to main content

Prospects for Designing ‘Universal’ Stem Cell Lines

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Successful transplantation of conventional tissues between individuals requires matching of human leukocyte associated antigens (HLA), in order to prevent rejection. Although the same principles apply to tissues differentiated from embryonic stem (ES) cells, recent advances in gene delivery and genetic regulation have raised the prospect of engineering grafts with reduced levels of HLA expression. This strategy may mitigate the effects of extensive HLA polymorphism which restricts the availability of suitable donors and necessitates the maintenance of large donor registries. Here, we discuss the potential of employing RNA interference (RNAi) to knockdown HLA expression, enabling allogeneic cells to evade immune recognition. We discuss how lentivirus-mediated delivery of short hairpin RNAs (shRNA) targeting pan-class I and allele-specific HLA achieves efficient, dose-dependent reduction in surface HLA expression in human cells. Thus, by combining genetic engineering and regenerative medicine, RNAi-induced silencing of HLA expression has the potential to create histocompatibility-enhanced and, perhaps even, “universally” compatible cellular grafts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Marsh SG, Albert ED, Bodmer WF et al ( 2010) Nomenclature for factors of the HLA system. Tissue Antigens 75:291–455

    PubMed  Google Scholar 

  2. Petersdorf EW, Malkki M (2005) Human leukocyte antigen matching in unrelated donor hematopoietic cell transplantation. Semin Hematol 42:76–84

    PubMed  CAS  Google Scholar 

  3. Petersdorf EW, Hansen JA, Martin PJ et al (2001) Major-histocompatibility-complex class I alleles and antigens in hematopoietic-cell transplantation. N Engl J Med 345:1794–1800

    PubMed  CAS  Google Scholar 

  4. Tiercy JM, Villard J, Roosnek E (2002) Selection of unrelated bone marrow donors by serology, molecular typing and cellular assays. Transpl Immunol 10:215–221

    PubMed  CAS  Google Scholar 

  5. Fleischhauer K, Kernan NA, O’Reilly RJ et al (1990) Bone marrow-allograft rejection by T lymphocytes recognizing a single amino acid difference in HLA-B44. N Engl J Med 323:1818–1822

    PubMed  CAS  Google Scholar 

  6. Petersdorf EW, Anasetti C, Martin PJ et al (2004) Limits of HLA mismatching in unrelated hematopoietic cell transplantation. Blood 104:2976–2980

    PubMed  CAS  Google Scholar 

  7. Sasazuki T, Juji T, Morishima Y et al (1998) Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. Japan marrow donor program. N Engl J Med 339:1177–1185

    PubMed  CAS  Google Scholar 

  8. Cicciarelli J (2004) HLA typing immunogenetics and transplantation. Curr Opin Organ Transpl 9:1–8

    Google Scholar 

  9. Rubinstein P (2001) HLA matching for bone marrow transplantation–how much is enough? N Engl J Med 345:1842–1844

    PubMed  CAS  Google Scholar 

  10. Vargas-Diez E, Fernandez-Herrera J, Marin A et al (2003) Analysis of risk factors for acute cutaneous graft-versus-host disease after allogeneic stem cell transplantation. Br J Dermatol 148:1129–1134

    PubMed  CAS  Google Scholar 

  11. Meier-Kriesche HU, Ojo AO, Leichtman AB et al (2001) Interaction of mycophenolate mofetil and HLA matching on renal allograft survival. Transplantation 71:398–401

    PubMed  CAS  Google Scholar 

  12. Meier-Kriesche HU, Scornik JC, Susskind B et al (2009) A lifetime versus a graft life approach redefines the importance of HLA matching in kidney transplant patients. Transplantation 88:23–29

    PubMed  Google Scholar 

  13. Cicciarelli J, Aswad S, Mendez R (2005) Significant HLA matching effect in a large urban transplant center composed primarily of minorities. Transplant Proc 37:658–660

    PubMed  CAS  Google Scholar 

  14. Li L, Baroja ML, Majumdar A et al (2004) Human embryonic stem cells possess immune-privileged properties. Stem Cells 22:448–456

    PubMed  CAS  Google Scholar 

  15. Drukker M, Katz G, Urbach A et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 99:9864–9869

    PubMed  CAS  Google Scholar 

  16. Drukker M, Katchman H, Katz G et al (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24:221–229

    PubMed  Google Scholar 

  17. Tian X, Woll PS, Morris JK et al (2006) Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells 24:1370–1380

    PubMed  CAS  Google Scholar 

  18. Fairchild PJ, Cartland S, Nolan KF et al (2004) Embryonic stem cells and the challenge of transplantation tolerance. Trends Immunol 25:465–470

    PubMed  CAS  Google Scholar 

  19. Boyd AS, Higashi Y, Wood KJ (2005) Transplanting stem cells: potential targets for immune attack. Modulating the immune response against embryonic stem cell transplantation. Adv Drug Deliv Rev 57:1944–1969

    PubMed  CAS  Google Scholar 

  20. Priddle H, Jones DR, Burridge PW et al (2006) Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies. Stem Cells 24:815–824

    PubMed  Google Scholar 

  21. Ohnuki M, Takahashi K, Yamanaka S (2009) Generation and characterization of human induced pluripotent stem cells. Curr Protoc Stem Cell Biol 9:4A.2.1–4A.2.25

    Google Scholar 

  22. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313–317

    PubMed  CAS  Google Scholar 

  23. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    PubMed  CAS  Google Scholar 

  24. Lyssiotis CA, Foreman RK, Staerk J et al (2009) Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA 106:8912–8917

    PubMed  Google Scholar 

  25. Drukker M, Benvenisty N (2004) The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol 22:136–141

    PubMed  CAS  Google Scholar 

  26. Bradley JA, Bolton EM, Pedersen RA (2002) Stem cell medicine encounters the immune system. Nat Rev Immunol 2:859–871

    PubMed  CAS  Google Scholar 

  27. Pollak R, Blanchard JM (2000) Organ donor or graft pretreatment to prolong allograft survival: lessons learned in the murine model. Transplantation 69:2432–2439

    PubMed  CAS  Google Scholar 

  28. Freland S, Chambers BJ, Andersson M et al (1998) Rejection of allogeneic and syngeneic but not MHC class I-deficient tumor grafts by MHC class I-deficient mice. J Immunol 160:572–579

    PubMed  CAS  Google Scholar 

  29. Mhashilkar AM, Doebis C, Seifert M et al (2002) Intrabody-mediated phenotypic knockout of major histocompatibility complex class I expression in human and monkey cell lines and in primary human keratinocytes. Gene Ther 9:307–319

    PubMed  CAS  Google Scholar 

  30. Beyer F, Doebis C, Busch A et al (2004) Decline of surface MHC I by adenoviral gene transfer of anti-MHC I intrabodies in human endothelial cells-new perspectives for the generation of universal donor cells for tissue transplantation. J Gene Med 6:616–623

    PubMed  CAS  Google Scholar 

  31. Hannon GJ, Rossi JJ (2004) Unlocking the potential of the human genome with RNA interference. Nature 431:371–378

    PubMed  CAS  Google Scholar 

  32. Hammond SM, Caudy AA, Hannon GJ (2001) Post-transcriptional gene silencing by double-stranded RNA. Nat Rev Genet 2:110–119

    PubMed  CAS  Google Scholar 

  33. McManus MT, Petersen CP, Haines BB et al (2002) Gene silencing using micro-RNA designed hairpins. RNA 8:842–850

    PubMed  CAS  Google Scholar 

  34. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433

    PubMed  CAS  Google Scholar 

  35. Hawkins PG, Santoso S, Adams C et al (2009) Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res 37:2984–2995

    PubMed  CAS  Google Scholar 

  36. Morris KV (2006) Therapeutic potential of siRNA-mediated transcriptional gene silencing. Biotechniques Suppl:7–13

    Google Scholar 

  37. Morris KV, Chan SW, Jacobsen SE et al (2004) Small interfering RNA-induced transcriptional gene silencing in human cells. Science 305:1289–1292

    PubMed  CAS  Google Scholar 

  38. Gonzalez S, Castanotto D, Li H et al (2005) Amplification of RNAi–targeting HLA mRNAs. Mol Ther 11:811–818

    PubMed  CAS  Google Scholar 

  39. Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    PubMed  CAS  Google Scholar 

  40. Zufferey R, Dull T, Mandel RJ et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    PubMed  CAS  Google Scholar 

  41. Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    PubMed  CAS  Google Scholar 

  42. Blomer U, Naldini L, Kafri T et al (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71:6641–6649

    PubMed  CAS  Google Scholar 

  43. Kafri T, Blomer U, Peterson DA et al (1997) Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 17:314–317

    PubMed  CAS  Google Scholar 

  44. Sakoda T, Kasahara N, Hamamori Y et al (1999) A high-titer lentiviral production system mediates efficient transduction of differentiated cells including beating cardiac myocytes. J Mol Cell Cardiol 31:2037–2047

    PubMed  CAS  Google Scholar 

  45. Shichinohe T, Bochner BH, Mizutani K et al (2001) Development of lentiviral vectors for antiangiogenic gene delivery. Cancer Gene Ther 8:879–889

    PubMed  CAS  Google Scholar 

  46. Borok Z, Harboe-Schmidt JE, Brody SL et al (2001) Vesicular stomatitis virus G-pseudotyped lentivirus vectors mediate efficient apical transduction of polarized quiescent primary alveolar epithelial cells. J Virol 75:11747–11754

    PubMed  CAS  Google Scholar 

  47. Li W, Nadelman C, Gratch NS et al (2002) An important role for protein kinase C-delta in human keratinocyte migration on dermal collagen. Exp Cell Res 273:219–228

    PubMed  CAS  Google Scholar 

  48. Chen M, Kasahara N, Keene DR et al (2002) Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa. Nat Genet 32:670–675

    PubMed  CAS  Google Scholar 

  49. Koya RC, Kasahara N, Favaro PM et al (2003) Potent maturation of monocyte-derived dendritic cells after CD40L lentiviral gene delivery. J Immunother 26:451–460

    PubMed  CAS  Google Scholar 

  50. Haga K, Lemp NA, Logg CR et al (2006) Permanent, lowered HLA class I expression using lentivirus vectors with shRNA constructs: averting cytotoxicity by alloreactive T lymphocytes. Transplant Proc 38:3184–3188

    PubMed  CAS  Google Scholar 

  51. Hacke K, Falahati R, Flebbe-Rehwaldt L et al (2009) Suppression of HLA expression by lentivirus-mediated gene transfer of siRNA cassettes and in vivo chemoselection to enhance hematopoietic stem cell transplantation. Immunol Res 44:112–126

    PubMed  CAS  Google Scholar 

  52. Benichou G, Yamada Y, Yun SH et al (2011) Immune recognition and rejection of allogeneic skin grafts. Immunotherapy 3:757–770

    PubMed  CAS  Google Scholar 

  53. Figueiredo C, Seltsam A, Blasczyk R (2006) Class-, gene-, and group-specific HLA silencing by lentiviral shRNA delivery. J Mol Med 84:425–437

    PubMed  CAS  Google Scholar 

  54. Figueiredo C, Horn PA, Blasczyk R et al (2007) Regulating MHC expression for cellular therapeutics. Transfusion 47:18–27

    PubMed  CAS  Google Scholar 

  55. Figueiredo C, Goudeva L, Horn PA et al (2010) Generation of HLA-deficient platelets from hematopoietic progenitor cells. Transfusion 50:1690–1701

    PubMed  CAS  Google Scholar 

  56. Ntokou IS, Iniotaki AG, Kontou EN et al (2011) Long-term follow up for anti-HLA donor specific antibodies postrenal transplantation: high immunogenicity of HLA class II graft molecules. Transpl Int 24:1084–1093

    PubMed  CAS  Google Scholar 

  57. Smith JD, Banner NR, Hamour IM et al (2011) De novo donor HLA-specific antibodies after heart transplantation are an independent predictor of poor patient survival. Am J Transplant 11:312–319

    PubMed  CAS  Google Scholar 

  58. Jaimes Y, Seltsam A, Eiz-Vesper B et al (2011) Regulation of HLA class II expression prevents allogeneic T-cell responses. Tissue Antigens 77:36–44

    PubMed  CAS  Google Scholar 

  59. Elssner A, Jaumann F, Wolf WP et al (2002) Bronchial epithelial cell B7–1 and B7–2 mRNA expression after lung transplantation: a role in allograft rejection? Eur Respir J 20:165–169

    PubMed  CAS  Google Scholar 

  60. Odobasic D, Kitching AR, Semple TJ et al (2005) Glomerular expression of CD80 and CD86 is required for leukocyte accumulation and injury in crescentic glomerulonephritis. J Am Soc Nephrol 16:2012–2022

    PubMed  CAS  Google Scholar 

  61. Salomon B, Lenschow DJ, Rhee L et al (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440

    PubMed  CAS  Google Scholar 

  62. Hunt JS, Langat DL (2009) HLA-G: a human pregnancy-related immunomodulator. Curr Opin Pharmacol 9:462–469

    PubMed  CAS  Google Scholar 

  63. Urosevic M, Dummer R (2008) Human leukocyte antigen-G and cancer immunoediting. Cancer Res 68:627–630

    PubMed  CAS  Google Scholar 

  64. Sheshgiri R, Rouas-Freiss N, Rao V et al (2008) Myocardial HLA-G reliably indicates a low risk of acute cellular rejection in heart transplant recipients. J Heart Lung Transplant 27:522–527

    PubMed  Google Scholar 

  65. Crispim JC, Duarte RA, Soares CP et al (2008) Human leukocyte antigen-G expression after kidney transplantation is associated with a reduced incidence of rejection. Transpl Immunol 18:361–367

    PubMed  CAS  Google Scholar 

  66. Brugiere O, Thabut G, Pretolani M et al (2009) Immunohistochemical study of HLA-G expression in lung transplant recipients. Am J Transplant 9:1427–1438

    PubMed  CAS  Google Scholar 

  67. Zarkhin V, Talisetti A, Li L et al (2010) Expression of soluble HLA-G identifies favorable outcomes in liver transplant recipients. Transplantation 90:1000–1005

    PubMed  CAS  Google Scholar 

  68. Sasaki H, Xu XC, Smith DM et al (1999) HLA-G expression protects porcine endothelial cells against natural killer cell-mediated xenogeneic cytotoxicity. Transplantation 67:31–37

    PubMed  CAS  Google Scholar 

  69. Zeng MH, Fang CY, Wang SS et al (2006) A study of soluble HLA-G1 protecting porcine endothelial cells against human natural killer cell-mediated cytotoxicity. Transplant Proc 38:3312–3314

    PubMed  CAS  Google Scholar 

  70. del Rio ML, Buhler L, Gibbons C et al (2008) PD-1/PD-L1, PD-1/PD-L2, and other co-inhibitory signaling pathways in transplantation. Transpl Int 21:1015–1028

    PubMed  Google Scholar 

  71. Plege A, Borns K, Baars W et al (2009) Suppression of human T-cell activation and expansion of regulatory T cells by pig cells overexpressing PD-ligands. Transplantation 87:975–982

    PubMed  CAS  Google Scholar 

  72. Najafian N, Sayegh MH (2000) CTLA4-Ig: a novel immunosuppressive agent. Expert Opin Investig Drugs 9:2147–2157

    PubMed  CAS  Google Scholar 

  73. Yamashita K, Masunaga T, Yanagida N et al (2003) Long-term acceptance of rat cardiac allografts on the basis of adenovirus mediated CD40Ig plus CTLA4Ig gene therapies. Transplantation 76:1089–1096

    PubMed  CAS  Google Scholar 

  74. Tomasoni S, Longaretti L, Azzollini N et al (2004) Favorable effect of cotransfection with TGF-beta and CTLA4Ig of the donor kidney on allograft survival. Am J Nephrol 24:275–283

    PubMed  CAS  Google Scholar 

  75. Zhou X, Schmidtke P, Zepp F et al (2005) Boosting interleukin-10 production: therapeutic effects and mechanisms. Curr Drug Targets Immune Endocr Metabol Disord 5:465–475

    PubMed  CAS  Google Scholar 

  76. Cypel M, Liu M, Rubacha M et al (2009) Functional repair of human donor lungs by IL-10 gene therapy. Sci Transl Med 1:4ra9

    PubMed  Google Scholar 

  77. Oishi H, Okada Y, Kikuchi T et al (2010) Transbronchial human interleukin-10 gene transfer reduces acute inflammation associated with allograft rejection and intragraft interleukin-2 and tumor necrosis factor-alpha gene expression in a rat model of lung transplantation. J Heart Lung Transplant 29:360–367

    PubMed  Google Scholar 

  78. Wonderlich ER, Leonard JA, Collins KL (2011) HIV immune evasion disruption of antigen presentation by the HIV Nef protein. Adv Virus Res 80:103–127

    PubMed  CAS  Google Scholar 

  79. Johnson JM, Nicot C, Fullen J et al (2001) Free major histocompatibility complex class I heavy chain is preferentially targeted for degradation by human T-cell leukemia/lymphotropic virus type 1 p12(I) protein. J Virol 75:6086–6094

    PubMed  CAS  Google Scholar 

  80. Windheim M, Hilgendorf A, Burgert HG (2004) Immune evasion by adenovirus E3 proteins: exploitation of intracellular trafficking pathways. Curr Top Microbiol Immunol 273:29–85

    PubMed  CAS  Google Scholar 

  81. Liu H, Fu J, Bouvier M (2007) Allele- and locus-specific recognition of class I MHC molecules by the immunomodulatory E3–19 K protein from adenovirus. J Immunol 178:4567–4575

    PubMed  CAS  Google Scholar 

  82. Fu J, Li L, Bouvier M (2011) Adenovirus E3–19 K proteins of different serotypes and subgroups have similar, yet distinct, immunomodulatory functions toward major histocompatibility class I molecules. J Biol Chem 286:17631–17639

    PubMed  CAS  Google Scholar 

  83. Toth K, Doronin K, Kuppuswamy M et al (2005) Adenovirus immunoregulatory E3 proteins prolong transplants of human cells in immunocompetent mice. Virus Res 108:149–159

    PubMed  CAS  Google Scholar 

  84. Kojaoghlanian T, Joseph A, Follenzi A et al (2009) Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic beta-cells to correct diabetes in allogeneic mice. Gene Ther 16:340–348

    PubMed  CAS  Google Scholar 

  85. Hewitt EW (2003) The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110:163–169

    PubMed  CAS  Google Scholar 

  86. Hansen TH, Bouvier M (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9:503–513

    PubMed  CAS  Google Scholar 

  87. Mocarski ES Jr (2004) Immune escape and exploitation strategies of cytomegaloviruses: impact on and imitation of the major histocompatibility system. Cell Microbiol 6:707–717

    PubMed  CAS  Google Scholar 

  88. Basta S, Bennink JR (2003) A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol 16:231–242

    PubMed  CAS  Google Scholar 

  89. Lehner PJ, Hoer S, Dodd R et al (2005) Downregulation of cell surface receptors by the K3 family of viral and cellular ubiquitin E3 ligases. Immunol Rev 207:112–125

    PubMed  CAS  Google Scholar 

  90. Zuo J, Quinn LL, Tamblyn J et al (2011) The Epstein-Barr virus-encoded BILF1 protein modulates immune recognition of endogenously processed antigen by targeting major histocompatibility complex class I molecules trafficking on both the exocytic and endocytic pathways. J Virol 85:1604–1614

    PubMed  CAS  Google Scholar 

  91. Fruh K, Bartee E, Gouveia K et al (2002) Immune evasion by a novel family of viral PHD/LAP-finger proteins of gamma-2 herpesviruses and poxviruses. Virus Res 88:55–69

    PubMed  CAS  Google Scholar 

  92. Bahar MW, Graham SC, Chen RA et al (2011) How vaccinia virus has evolved to subvert the host immune response. J Struct Biol 175:127–134

    PubMed  CAS  Google Scholar 

  93. Spencer JV, Lockridge KM, Barry PA et al (2002) Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 76:1285–1292

    PubMed  CAS  Google Scholar 

  94. Lafon M, Prehaud C, Megret F et al (2005) Modulation of HLA-G expression in human neural cells after neurotropic viral infections. J Virol 79:15226–15237

    PubMed  CAS  Google Scholar 

  95. Wu J, Bonsra AN, Du G (2009) pSM155 and pSM30 vectors for miRNA and shRNA expression. Methods Mol Biol 487:205–219

    PubMed  CAS  Google Scholar 

  96. Baltimore D, Boldin MP, O’Connell RM et al (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845

    PubMed  CAS  Google Scholar 

  97. Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108:3646–3653

    PubMed  CAS  Google Scholar 

  98. Aagaard LA, Zhang J, von Eije KJ et al (2008) Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther 15:1536–1549

    PubMed  CAS  Google Scholar 

  99. Stern-Ginossar N, Elefant N, Zimmermann A et al (2007) Host immune system gene targeting by a viral miRNA. Science 317:376–381

    PubMed  CAS  Google Scholar 

  100. Swaminathan S (2008) Noncoding RNAs produced by oncogenic human herpesviruses. J Cell Physiol 216:321–326

    PubMed  CAS  Google Scholar 

  101. Boss IW, Renne R (2010) Viral miRNAs: tools for immune evasion. Curr Opin Microbiol 13:540–545

    PubMed  CAS  Google Scholar 

  102. Santiago Y, Chan E, Liu PQ et al (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 105:5809–5814

    PubMed  CAS  Google Scholar 

  103. Urnov FD, Miller JC, Lee YL et al (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:646–651

    PubMed  CAS  Google Scholar 

  104. Morbitzer R, Romer P, Boch J et al (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci USA 107:21617–21622

    PubMed  CAS  Google Scholar 

  105. Christian M, Cermak T, Doyle EL et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    PubMed  CAS  Google Scholar 

  106. Miller JC, Tan S, Qiao G et al (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    PubMed  CAS  Google Scholar 

  107. Szczepek M, Brondani V, Buchel J et al (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793

    PubMed  CAS  Google Scholar 

  108. Doyon Y, Vo TD, Mendel MC et al (2011) Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods 8:74–79

    PubMed  CAS  Google Scholar 

  109. Gabriel R, Lombardo A, Arens A et al (2011) An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol 29:816–823

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Kasahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cicciarelli, J.C., Lemp, N.A., Kasahara, N. (2013). Prospects for Designing ‘Universal’ Stem Cell Lines. In: Fairchild, P. (eds) The Immunological Barriers to Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5480-9_9

Download citation

Publish with us

Policies and ethics