Skip to main content

Thymic Involution: A Barrier or Opportunity for Cell Replacement Therapy?

  • Chapter
  • First Online:
Book cover The Immunological Barriers to Regenerative Medicine

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 1102 Accesses

Abstract

Although regenerative medicine offers prospects for cell replacement therapies relevant to many disease states, research has mainly focused on regenerating major organ systems such as the heart, kidney and lungs. The thymus, however, undergoes natural age-related involution and its ability to sustain a functional T cell repertoire therefore declines throughout life. While in healthy adults this process has no significant immunological impact, in immunocompromised patients, the involuted thymus is unable to rescue immune homeostasis which leads to increased risk of infection. Regenerating the thymus using stem cell technology, may, therefore, provide a viable option for rescuing immune function in immune compromised or elderly patients. Furthermore, thymic regeneration offers the prospect of influencing the acceptance of allogeneic tissues through the induction of central tolerance. Here, we explore the rationale behind thymic transplantation and current efforts in the stem cell field aiming to derive functional thymic tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson G, Jenkinson E (2001) Lymphostromal interactions in thymus development and function. Nat Rev Immunol 1:31–40

    Article  PubMed  CAS  Google Scholar 

  2. Nishino M, Ashiku SK, Kocher ON, Thurer RL, Boiselle PM, Hatabu H (2006) The thymus: a comprehensive review. Radiographics 26:336–348

    Article  Google Scholar 

  3. Miller JF (1961) Immunological basis of the thymus. Lancet 2:748–749

    Article  PubMed  CAS  Google Scholar 

  4. Baldwin TA, Hogquist KA, Jameson SC (2004) The fourth way? Harnessing aggressive tendencies in the thymus. J Immunol 173:6515–6520

    PubMed  CAS  Google Scholar 

  5. Steinmann GG, Klaus B, Muller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. Scand J Immunol 22:563–575

    Article  PubMed  CAS  Google Scholar 

  6. Sobhon P, Jirasattham C (1974) Effect of sex hormones on the thymus and lymphoid tissue of ovariectomized rats. Acta Anat 89:211–225

    Article  PubMed  CAS  Google Scholar 

  7. Yajima N, Sakamaki K, Yonehara S (2004) Age related thymic involution is mediated by Fas on thymic epithelial cells. Jap Soc Immunol 16:027–1035

    Google Scholar 

  8. Sutherland JS, Goldberg GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS, Blazar BR, Millar JL, Malin MA, Chidgey AP, Boyd RL (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175:2741–2753

    PubMed  CAS  Google Scholar 

  9. Sakaguchi S, Sakaguchi N (1988) Thymus and autoimmunity: transplantation of the thymus from cyclosporin A-treated mice causes organ-specific autoimmune disease in athymic nude mice. J Exp Med 167:1479–1485

    Article  PubMed  CAS  Google Scholar 

  10. George AJT, Ritter MA (1999) Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today 17:267–272

    Article  Google Scholar 

  11. Kirkwood TBL (1977) Evolution of ageing. Nature 270:301–304

    Article  PubMed  CAS  Google Scholar 

  12. Manley N, Gordon J (2011) Mechanisms of thymus organogenesis and morphogenesis. Development 138:3685–3878

    Google Scholar 

  13. Blackburn CC, Manley NR (2004) Developing a new paradigm for thymus organogenesis. Nat Rev Immunol 4:278–289

    Article  PubMed  CAS  Google Scholar 

  14. Manley NR, Bryson JL, Griffith AV, Takahama Y, Richie ER (2009) Foxn1 is required for thymic vascularisation. J Immunol 182:86–90

    Google Scholar 

  15. Corbeaux T, Hess I, Swann J, Kanzler B, Haas-Assenbaum A, Boehm T (2010) Thymopoiesis in mice depends on a Foxn1-positive thymic epithelial cell lineage. PNAS 107:16613–16618

    Article  PubMed  CAS  Google Scholar 

  16. Cordier AC, Heremans JF (1975) Nude mouse embyro: ectodermal nature of the primordial thymic defect. Scan J Immunol 4:193–196

    Article  CAS  Google Scholar 

  17. Le Dourain NM, Jotereau FV (1975) Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J Exp Med 142:17–39

    Article  Google Scholar 

  18. Moore MAS, Owen JJT (1967) Experimental studies on the development of the thymus. J Exp Med 126:715–726

    Article  PubMed  CAS  Google Scholar 

  19. Gordon J, Wilson VA, Blaire FN, Sheridan J, Farley A, Wilson L, Manley NR, Blackburn CC (2004) Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol 5:546–553

    Article  PubMed  CAS  Google Scholar 

  20. Bleul CC, Corbeaux T, Reuter A, Fisch P, Monting JS, Boehm T (2006) Formation of a functional thymus initiated by a post natal epithelial progenitor cell. Nature 441:992–996

    Article  PubMed  CAS  Google Scholar 

  21. Gordon J, Wilson VA, Blair NF (2004) Functional evidence for a single endodermal origin of the thymic epithelium. Nat Immunol 5:546–553

    Article  PubMed  CAS  Google Scholar 

  22. Rossi WW, Jenkinson E, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441:988–991

    Article  PubMed  CAS  Google Scholar 

  23. Bennett AR, Farley A, Blair NF, Gordon J, Sharp L, Blackburn CC (2002) Identification and characterisation of thymic epithelial progenitor cells. Immunity 16:803–814

    Article  PubMed  CAS  Google Scholar 

  24. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D (2002) Projection of immunological self shadow by Aire protein. Science 298:1395–1401

    Article  PubMed  CAS  Google Scholar 

  25. Douek DC, McFarland RD, Keiser PH, Gage EA, Massey JM, Haynes BF, Polis MA, Haase AT, Feinberg MB, Sullivan JL, Jamieson BD, Zack JA, Picker LJ, Koup RA (1998) Changes in thymic function with age and during treatment of HIV infection. Nature 396:690–695

    Article  PubMed  CAS  Google Scholar 

  26. Livak F, Schatz DG (1996) T cell receptor alpha locus V(D) J recombination by-products are abundant in thymocytes and mature T cell. Mol Cell Biol 16:609–618

    PubMed  CAS  Google Scholar 

  27. Markert ML, Boeck A, Hale LP, Kloster AL, McLaughlin TM, Rice HE, Mahaffey SM (1999) Transplantation of thymus tissue in complete DiGeorge syndrome. New Engl J Med 341:1180–1189

    Article  PubMed  CAS  Google Scholar 

  28. Markert ML, Sarzotti M, Ozaki DA, Sempowski GD, Rhein ME, Hale LP, Le Deist F, Alexeiff MJ, Li J, Hauser ER, Haynes BF, Skinner MA, Mahaffey SM, Jaggers J, Stein LD, Mill MR (2003) Thymus transplantation in complete DiGeorge syndrome: immunological and safety evaluations in 12 patients. Blood 102:1121–1130

    Article  PubMed  CAS  Google Scholar 

  29. Liesveld JL, Rothberg PG (2008) Mixed chimerism in SCT: conflict or peaceful coexistence? Bone Marrow Transplant 42:297–310

    Article  PubMed  CAS  Google Scholar 

  30. Wekerle T, Sykes M (2001) Mixed chimerism and transplantation tolerance. Ann Rev Med 52:353–370

    Article  PubMed  CAS  Google Scholar 

  31. Lai L, Jin J (2009) Generation of thymic epithelial cell progenitors by mouse embryonic stem cells. Stem Cells 27:3012–302

    PubMed  CAS  Google Scholar 

  32. Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, Nishikawa S, Chiba T, Era T, Nishikawa S (2005) Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol 23:1542–1550

    Article  PubMed  CAS  Google Scholar 

  33. Gill J, Malin M, Hollander G, Boyd R (2002) Generation of a complete thymic microenvironment by MTS24 + thymic epithelial cells. Nat Immunol 7:635–642

    Article  Google Scholar 

  34. Seach N, Mattesich M, Abberton K, Matsuda K, Tilkorn DJ, Rophael J, Boyd RL, Morrison WA (2010) Vascularized tissue engineering mouse chamber model supports thymopoiesis of ectopic thymus tissue grafts. Tissue Eng 16:543–551

    Article  CAS  Google Scholar 

  35. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  36. Inami Y, Yoshikai T, Ito S, Nishio N, Suzuki H, Sakurai H, Isobe K (2010) Differentiation of induced pluripotent stem cells to thymic epithelial cells by phenotype. Immunol Cell Biol 89:314–321

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to Kate Silk, Naoki Ichiryu, Alison Leishman, Tim Davies and Patty Sachamitr for helpful discussions. SH holds an MRC Capacity Building Studentship awarded to the Oxford Stem Cell Institute. Work on thymic involution in the authors' laboratory was supported by Pfizer Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul J. Fairchild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hackett, S., Fairchild, P.J. (2013). Thymic Involution: A Barrier or Opportunity for Cell Replacement Therapy?. In: Fairchild, P. (eds) The Immunological Barriers to Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-5480-9_6

Download citation

Publish with us

Policies and ethics