Advertisement

Interaction of Embryonic Stem Cells with the Immune System

  • Cody A. Koch
  • Jeffrey L. Platt
Chapter
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)

Abstract

Embryonic stem (ES) cells interact with the immune system in unique ways. Immune interactions of ES cells and tumor formation appear to be reciprocal functions—the less immunity ES cells provoke, the greater the risk of tumor formation. Knowledge of the interaction of ES cells and their derivatives with the immune system and their relationship to tumor formation is critical to their potential therapeutic applications to regenerative medicine.

Keywords

Major Histocompatibility Complex Embryonic Stem Cell Major Histocompatibility Complex Class Pluripotent Stem Cell Leukemia Inhibitory Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Supplemented by grants from the NIH: HL52297.

References

  1. 1.
    Fujikawa T, Oh SH, Pi L, Hatch HM et al (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166:1781–1791PubMedCrossRefGoogle Scholar
  2. 2.
    Koch CA, Platt JL (2003) Natural mechanisms for evading graft rejection: the fetus as an allograft. Springer Sem Immunopathol 25:95–117CrossRefGoogle Scholar
  3. 3.
    Jordan CT (2004) Cancer stem cell biology: from leukemia to solid tumors. Curr Opin Cell Biol 16:708–712PubMedCrossRefGoogle Scholar
  4. 4.
    Platt J, Cascalho M (2010) Transplantation immunology. In: Mulholland M, Lillemoe K, Doherty G, Maier R, Upchurch G, Simeone D (eds) Greenfield’s surgery: scientific principles and practice, 5th edn. Lippincott, Williams & Wilkins, Philadelphia, pp 497–513Google Scholar
  5. 5.
    Platt JL, Cascalho M, West LJ (2009) Lessons from cardiac transplantation in infancy. Pediatr Transplant 13:814–819PubMedCrossRefGoogle Scholar
  6. 6.
    Platt JL, Rubinstein P (1997) Mechanisms and characteristics of allograft rejection. In: Sabiston Jr DC, Lyerly HK (eds) Textbook of surgery. The biological basis of modern surgical practice, 15th edn. W.B. Saunders, PhiladelphiaGoogle Scholar
  7. 7.
    Cascalho M, Ma A, Lee S, Masat L et al (1996) A quasi-monoclonal mouse. Science 272:1649–1652PubMedCrossRefGoogle Scholar
  8. 8.
    AbuAttieh M, Rebrovich M, Wettstein PJ, Vuk-Pavlovic Z et al (2007) Fitness of cell-mediated immunity independent of repertoire diversity. J Immunol 178:2060–2950Google Scholar
  9. 9.
    Matzinger P, Bevan MJ (1977) Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell Immunol 29:1–5PubMedCrossRefGoogle Scholar
  10. 10.
    Felix NJ, Donermeyer DL, Horvath S, Walters JJ et al (2007) Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nat Immunol 8:388–397PubMedCrossRefGoogle Scholar
  11. 11.
    Suchin EJ, Langmuir PB, Palmer E, Sayegh MH et al (2001) Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol 166:973–981PubMedGoogle Scholar
  12. 12.
    Snell GD (1980) The major histocompatibility complex: its evolution and involvement in cellular immunity. Harvey Lect 74:49–80PubMedGoogle Scholar
  13. 13.
    Dvorak HF, Mihm MC Jr, Dvorak AM, Barnes BA et al (1979) Rejection of first-set skin allografts in man. The microvasculature is the critical target of the immune response. J Exp Med 150:322–337PubMedCrossRefGoogle Scholar
  14. 14.
    Pober JS, Bothwell AL, Lorber MI, McNiff JM et al (2003) Immunopathology of human T cell responses to skin, artery and endothelial cell grafts in the human peripheral blood lymphocyte/severe combined immunodeficient mouse. Springer Sem Immunopathol 25:167–180CrossRefGoogle Scholar
  15. 15.
    Auchincloss H, Lee R, Shea S, Markowitz JS et al (1993) The role of “indirect” recognition in initiating rejection of skin grafts from major histocompatibility complex class II-deficient mice. Proc Natl Acad Sci U S A 90:3373–3377PubMedCrossRefGoogle Scholar
  16. 16.
    Jerne NK (1971) The somatic generation of immune recognition. Eur J Immunol 1:1–9PubMedCrossRefGoogle Scholar
  17. 17.
    Chicz RM, Urban RG, Lane WS, Gorga JC et al (1992) Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 358:764–768PubMedCrossRefGoogle Scholar
  18. 18.
    João CM, Ogle BM, Gay-Rubenstein C, Platt JL et al (2004) B cell-dependent TCR diversification. J Immunol 172:4709–4716PubMedGoogle Scholar
  19. 19.
    Lombardi G, Sidhu S, Daly M, Batchelor JR et al (1990) Are primary alloresponses truly primary? Int Immunol 2:9–13PubMedCrossRefGoogle Scholar
  20. 20.
    Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603PubMedCrossRefGoogle Scholar
  21. 21.
    Ando K, Hasegawa T, Nakashima I, Mizoguchi K et al (1985) Ontogeny of the transplantation immunity of mice for rejecting ascitic allogeneic tumors. Dev Comp Immunol 9:701–708PubMedCrossRefGoogle Scholar
  22. 22.
    Billingham RE, Brent L, Medawar PB, Sparrow EM (1954) Quantitative studies on tissue transplantation immunity. I. The survival times of skin homografts exchanged between members of different inbred strains of mice. Proc Roy Soc Lond 143:43–58CrossRefGoogle Scholar
  23. 23.
    Hubner K, Fuhrmann G, Christenson LK, Kehler J et al (2003) Derivation of oocytes from mouse embryonic stem cells. Science 300:1251–1256PubMedCrossRefGoogle Scholar
  24. 24.
    Geijsen N, Horoschak M, Kim K, Gribnau J et al (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature 427:148–154PubMedCrossRefGoogle Scholar
  25. 25.
    West JA, Daley GQ (2004) In vitro gametogenesis from embryonic stem cells. Curr Opin Cell Biol 16:688–692PubMedCrossRefGoogle Scholar
  26. 26.
    Beddington RS, Robertson EJ (1989) An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105:733–737PubMedGoogle Scholar
  27. 27.
    Thomson JA, Kalishman J, Golos TG, Durning M et al (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci U S A 92:7844–7848PubMedCrossRefGoogle Scholar
  28. 28.
    Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376PubMedCrossRefGoogle Scholar
  29. 29.
    Shamblott MJ, Axelman J, Wang S, Bugg EM et al (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci U S A 95:13726–13731PubMedCrossRefGoogle Scholar
  30. 30.
    Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847PubMedCrossRefGoogle Scholar
  31. 31.
    Smith AG (2001) Embryo-derived stem cells: of mice and men. Ann Rev Cell Dev Biol 17:435–462CrossRefGoogle Scholar
  32. 32.
    Zwaka TP, Thomson JA (2005) A germ cell origin of embryonic stem cells? Development 132:227–233PubMedCrossRefGoogle Scholar
  33. 33.
    Donovan PJ, Gearhart J (2001) The end of the beginning for pluripotent stem cells. Nature 414:92–97PubMedCrossRefGoogle Scholar
  34. 34.
    Askanazy M (1907) Die Teratome nach ihrem Bau, ihrem Verlauf, ihrer Genese und im Vergleich zum experimentellen Teratoid. Verhandl Deutsch Pathol 11:39–82Google Scholar
  35. 35.
    Jackson E, Brues A (1941) Studies on a transplantable embryoma of the mouse. Cancer Res 1:494–498Google Scholar
  36. 36.
    Pierce GB Jr, Dixon FJ Jr, Verney EL (1960) Teratocarcinogenic and tissue-forming potentials of the cell types comprising neoplastic embryoid bodies. Lab Invest 9:583–602PubMedGoogle Scholar
  37. 37.
    Kleinsmith LJ, Pierce GB Jr (1964) Multipotentiality of single embryonal carcinoma cells. Cancer Res 24:1544–1551PubMedGoogle Scholar
  38. 38.
    Finch BW, Ephrussi B (1967) Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines. Proc Natl Acad Sci U S A 57:615–621PubMedCrossRefGoogle Scholar
  39. 39.
    Runner MN (1947) Development of mouse eggs in the anterior chamber of the eye. Anat Rec 98:1–17PubMedCrossRefGoogle Scholar
  40. 40.
    Stevens LC (1968) The development of teratomas from intratesticular grafts of tubal mouse eggs. J Embryol Exp Morphol 20:329–341PubMedGoogle Scholar
  41. 41.
    Damjanov I, Solter D, Škreb N (1971) Teratocarcinogenesis as related to the age of embryos grafted under the kidney capsule. Wilhelm Roux’ Arch 167:288–290CrossRefGoogle Scholar
  42. 42.
    Solter D, Škreb N, Damjanov I (1970) Extrauterine growth of mouse egg-cylinders results in malignant teratoma. Nature 227:503–504PubMedCrossRefGoogle Scholar
  43. 43.
    Martin GR (1980) Teratocarcinomas and mammalian embryogenesis. Science 209:768–776PubMedCrossRefGoogle Scholar
  44. 44.
    Diwan SB, Stevens LC (1976) Development of teratomas from the ectoderm of mouse egg cylinders. J Natl Cancer Inst 57:937–942PubMedGoogle Scholar
  45. 45.
    Mintz B, Cronmiller C, Custer RP (1978) Somatic cell origin of teratocarcinomas. Proc Natl Acad Sci U S A 75:2834–2838PubMedCrossRefGoogle Scholar
  46. 46.
    Eppig J, Kozak L, Eicher E (1977) Ovarian teratomas in mice are derived from oocytes that have completed the first meiotic division. Nature 269:517–518PubMedCrossRefGoogle Scholar
  47. 47.
    Papaioannou VE, McBurney MW, Gardner RL, Evans MJ (1975) Fate of teratocarcinoma cells injected into early mouse embryos. Nature 258:70–73PubMedCrossRefGoogle Scholar
  48. 48.
    Bernstine EG, Hooper ML, Grandchamp S, Ephrussi B (1973) Alkaline phosphatase activity in mouse teratoma. Proc Natl Acad Sci U S A 70:3899–3903CrossRefGoogle Scholar
  49. 49.
    Artzt K, Dubois P, Bennett D, Condamine H et al (1973) Surface antigens common to mouse cleavage embryos and primitive teratocarcinoma cells in culture. Proc Natl Acad Sci U S A 70:2988–2992PubMedCrossRefGoogle Scholar
  50. 50.
    Evans M (1981) Origin of mouse embryonal carcinoma cells and the possibility of their direct isolation into tissue culture. J Reprod Fertil 62:625–631PubMedCrossRefGoogle Scholar
  51. 51.
    Solter D, Knowles BB (1975) Immunosurgery of mouse blastocyst. Proc Natl Acad Sci U S A 72:5099–5102PubMedCrossRefGoogle Scholar
  52. 52.
    Sherman MI (1975) The culture of cells derived from mouse blastocysts. Cell 5:343–349PubMedCrossRefGoogle Scholar
  53. 53.
    Atienza-Samols S, Sherman M (1978) Outgrowth promoting factor for the inner cell mass of the mouse blastocyst. Dev Biol 66:220–231PubMedCrossRefGoogle Scholar
  54. 54.
    Bongso A, Fong CY, Ng SC, Ratnam S (1994) Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 9:2110–2117PubMedGoogle Scholar
  55. 55.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  56. 56.
    Hodgson DM, Behfar A, Zingman LV, Kane GC et al (2004) Stable benefit of embryonic stem cell therapy in myocardial infarction. Am J Physiol Heart Circ Physiol 287:H471–H479PubMedCrossRefGoogle Scholar
  57. 57.
    Yamada S, Nelson TJ, Crespo-Diaz RJ, Perez-Terzic C et al (2008) Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells 26:2644–2653PubMedCrossRefGoogle Scholar
  58. 58.
    Yamamoto H, Quinn G, Asari A, Yamanokuchi H et al (2003) Differentiation of embryonic stem cells into hepatocytes: biological functions and therapeutic application. Hepatology 37:983–993PubMedCrossRefGoogle Scholar
  59. 59.
    Klug MG, Soonpaa MH, Koh GY, Field LJ (1996) Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98:216–224PubMedCrossRefGoogle Scholar
  60. 60.
    Brustle O, Jones KN, Learish RD, Karram K et al (1999) Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285:754–756PubMedCrossRefGoogle Scholar
  61. 61.
    Basma H, Soto-Gutiérrez A, Yannam G, Liu L et al (2009) Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology 136:990–999PubMedCrossRefGoogle Scholar
  62. 62.
    Burt RK, Verda L, Kim DA, Oyama Y et al (2004) Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J Exp Med 199:895–904PubMedCrossRefGoogle Scholar
  63. 63.
    Lumelsky N, Blondel O, Laeng P, Valasco I et al (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292:1389–1394PubMedCrossRefGoogle Scholar
  64. 64.
    Ariga H, Ohto H, Busch MP, Imamura S et al (2001) Kinetics of fetal cellular and cell-free DNA in the maternal circulation during and after pregnancy: implications for noninvasive prenatal diagnosis. Transfusion 41:1524–1530PubMedCrossRefGoogle Scholar
  65. 65.
    Bianchi DW, Zickwolf GK, Weil GJ, Sylvester S et al (1996) Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum. Proc Natl Acad Sci U S A 93:705–708PubMedCrossRefGoogle Scholar
  66. 66.
    Khosrotehrani K, Bianchi DW (2005) Multi-lineage potential of fetal cells in maternal tissue: a legacy in reverse. J Cell Sci 118:1559–1563PubMedCrossRefGoogle Scholar
  67. 67.
    Srivatsa B, Srivatsa S, Johnson KL, Samura O et al (2001) Microchimerism of presumed fetal origin in thyroid specimens from women: a case-control study. Lancet 358:2034–2038PubMedCrossRefGoogle Scholar
  68. 68.
    Cha D, Khosrotehrani K, Kim Y, Stroh H et al (2003) Cervical cancer and microchimerism. Obstet Gynecol 102:774–781PubMedCrossRefGoogle Scholar
  69. 69.
    Stevens LC (1962) Testicular teratomas in fetal mice. J Natl Cancer Inst 28:247–267PubMedGoogle Scholar
  70. 70.
    Stevens LC, Varnum DS (1974) The development of teratomas from parthenogenetically activated ovarian mouse eggs. Dev Biol 37:369–380PubMedCrossRefGoogle Scholar
  71. 71.
    Behfar A, Zingman LV, Hodgson DM, Rauzier JM et al (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16:1558–1566PubMedCrossRefGoogle Scholar
  72. 72.
    Nussbaum J, Minami E, Laflamme MA, Virag JA et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357PubMedCrossRefGoogle Scholar
  73. 73.
    Dressel R, Schindehutte J, Kuhlmann T, Elsner L et al (2008) The tumorigenicity of mouse embryonic stem cells and in vitro differentiated neuronal cells is controlled by the recipients’ immune response. PLoS One 3:e2622PubMedCrossRefGoogle Scholar
  74. 74.
    Xu C, Mao D, Holers VM, Palanca B et al (2000) A critical role for murine complement regulator Crry in fetomaternal tolerance. Science 287:498–501PubMedCrossRefGoogle Scholar
  75. 75.
    Koch CA, Jordan CE, Platt JL (2006) Complement-dependent control of teratoma formation by embryonic stem cells. J Immunol 177:4803–4809PubMedGoogle Scholar
  76. 76.
    Koch CA, Platt JL (2008) Immunosuppression by embryonic stem cells. Stem Cells 26:89–98PubMedCrossRefGoogle Scholar
  77. 77.
    Fandrich F, Lin X, Chai GX, Schulze M et al (2002) Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat Med 8:171–178PubMedCrossRefGoogle Scholar
  78. 78.
    Ildstad ST, Sachs DH (1984) Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307:168–170PubMedCrossRefGoogle Scholar
  79. 79.
    Smith CV, Nakajima K, Mixon A, Guzzetta PC et al (1992) Successful induction of long-term specific tolerance to fully allogeneic renal allografts in miniature swine. Transplantation 53:438–444PubMedCrossRefGoogle Scholar
  80. 80.
    Magliocca JF, Held IK, Odorico JS (2006) Undifferentiated murine embryonic stem cells cannot induce portal tolerance but may possess immune privilege secondary to reduced major histocompatibility complex antigen expression. Stem Cells Dev 15:707–717PubMedCrossRefGoogle Scholar
  81. 81.
    Priddle H, Jones DR, Burridge PW, Patient R (2006) Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies. Stem Cells 24:815–824PubMedCrossRefGoogle Scholar
  82. 82.
    Bonde S, Chan KM, Zavazava N (2008) ES-cell derived hematopoietic cells induce transplantation tolerance. PLoS One 3:e3212PubMedCrossRefGoogle Scholar
  83. 83.
    Tian L, Catt JW, O’Neill C, King NJ (1997) Expression of immunoglobulin superfamily cell adhesion molecules on murine embryonic stem cells. Biol Reprod 57:561–568PubMedCrossRefGoogle Scholar
  84. 84.
    Drukker M, Katz G, Urbach A, Schuldiner M et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99:9864–9869PubMedCrossRefGoogle Scholar
  85. 85.
    Lampton PW, Crooker RJ, Newmark JA, Warner CM (2008) Expression of major histocompatibility complex class I proteins and their antigen processing chaperones in mouse embryonic stem cells from fertilized and parthenogenetic embryos. Tissue Antigens 72:448–457PubMedCrossRefGoogle Scholar
  86. 86.
    Boyd AS, Wood KJ (2009) Variation in MHC expression between undifferentiated mouse ES cells and ES cell-derived insulin-producing cell clusters. Transplantation 87:1300–1304PubMedCrossRefGoogle Scholar
  87. 87.
    Dressel R, Nolte J, Elsner L, Novota P et al (2010) Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J 24:2164–2177PubMedCrossRefGoogle Scholar
  88. 88.
    Grinnemo KH, Kumagai-Braesch M, Mansson-Broberg A, Skottman H et al (2006) Human embryonic stem cells are immunogenic in allogeneic and xenogeneic settings. Reprod Biomed Online 13:712–724PubMedCrossRefGoogle Scholar
  89. 89.
    Swijnenburg RJ, Tanaka M, Vogel H, Baker J et al (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112:I166–I172PubMedGoogle Scholar
  90. 90.
    Bonde S, Zavazava N (2006) Immunogenicity and engraftment of mouse embryonic stem cells in allogeneic recipients. Stem Cells 24:2192–2201PubMedCrossRefGoogle Scholar
  91. 91.
    Wu DC, Boyd AS, Wood KJ (2008) Embryonic stem cells and their differentiated derivatives have a fragile immune privilege but still represent novel targets of immune attack. Stem Cells 26:1939–1950PubMedCrossRefGoogle Scholar
  92. 92.
    Robertson NJ, Brook FA, Gardner RL, Cobbold SP et al (2007) Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci U S A 104:20920–20925PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Otorhinolaryngology—Head and Neck SurgeryMayo Clinic College of MedicineRochesterUSA
  2. 2.Departments of Surgery and of Microbiology and ImmunologyUniversity of MichiganAnn ArborUSA

Personalised recommendations