Prospects for the Induction of Transplant Tolerance Using Dendritic Cells

  • Matthew Buckland
  • Lesley Smyth
  • Robert Lechler
  • Giovanna Lombardi
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


Dendritic cells (DCs) play a key role in both central and peripheral tolerance induction and maintenance. Strategies to modify dendritic cells ex vivo to induce tolerance to an allograft have been extensively studied. Approaches include genetic modification of DCs, siRNA silencing of co-stimulatory pathways and drug modification. The ex vivo approaches are associated with the generation of DCs that can induce hypo-responsiveness in responder T cells and/or the expansion or de novo generation of regulatory T cells. However, in stringent models of transplantation they fail to reliably induce long-term allograft survival. We explore the mechanisms underlying this lack of efficacy and other potential strategies of DC modification including targeting of alloantigens to defined DC subsets such that we have reliable protocols to induce peripheral tolerance.


Dendritic Cell Major Histocompatibility Complex Major Histocompatibility Complex Class Treg Cell Major Histocompatibility Complex Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dunn DL (1990) Problems related to immunosuppression. Infection and malignancy occurring after solid organ transplantation. Crit Care Clin 6:955PubMedGoogle Scholar
  2. 2.
    Brazelton TR, Randall EM (1996) Molecular mechanisms of action of new xenobiotic immunosuppressive drugs: tacrolimus (FK506), sirolimus (rapamycin), mycophenolate mofetil and leflunomide. Curr Opin Immunol 8:710–720PubMedGoogle Scholar
  3. 3.
    Coenen JJ, Koenen HJ, van Rijssen E, Hilbrands LB, Joosten I (2006) Rapamycin, and not cyclosporin A, preserves the highly suppressive CD27+ subset of human CD4+CD25+ regulatory T cells. Blood 107:1018–1023PubMedGoogle Scholar
  4. 4.
    Finn PW, He H, Wang Y, Wang Z, Guan G, Listman J et al (1997) Synergistic induction of CTLA-4 expression by costimulation with TCR plus CD28 signals mediated by increased transcription and messenger ribonucleic acid stability. J Immunol 158:4074–4081PubMedGoogle Scholar
  5. 5.
    Chamorro S, Garcia-Vallejo JJ, Unger WWJ, Fernandes RJ, Bruijns SCM, Laban S et al (2009) TLR Triggering on tolerogenic dendritic cells results in TLR2 up-regulation and a reduced proinflammatory immune program. J Immunol 183:2984–2994PubMedGoogle Scholar
  6. 6.
    Kronin V, Winkel K, Suss G, Kelso A, Heath W, Kirberg J et al (1996) A subclass of dendritic cells regulates the response of naive CD8 T cells by limiting their IL-2 production. J Immunol 157:3819–3827PubMedGoogle Scholar
  7. 7.
    Maldonado-Lopez R, De Smedt T, Pajak B, Heirman C, Thielemans K, Leo O et al (1999) Role of CD8alpha+ and CD8alpha− dendritic cells in the induction of primary immune responses in vivo. J Leukoc Biol 66:242–246PubMedGoogle Scholar
  8. 8.
    Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E et al (1999) Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci USA 96:1036–1041PubMedGoogle Scholar
  9. 9.
    Caux C, Massacrier C, Vanbervliet B, Dubois B, de Saint-Vis B, Dezutter-Dambuyant C et al (1997) CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. Adv Exp Med Biol 417:21–25PubMedGoogle Scholar
  10. 10.
    Kondo M, Weissman IL, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672PubMedGoogle Scholar
  11. 11.
    Akashi K, Traver D, Miyamoto T, Weissman IL (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197PubMedGoogle Scholar
  12. 12.
    Kamath AT, Pooley J, O’Keeffe MA, Vremec D, Zhan Y, Lew AM et al (2000) The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J Immunol 165:6762–6770PubMedGoogle Scholar
  13. 13.
    Shortman K (2000) Burnet oration: dendritic cells: multiple subtypes, multiple origins, multiple functions. Immunol Cell Biol 78:161–165PubMedGoogle Scholar
  14. 14.
    Anjuere F, Martin P, Ferrero I, Fraga ML, del Hoyo GM, Wright N et al (1999) Definition of dendritic cell subpopulations present in the spleen, Peyer’s patches, lymph nodes, and skin of the mouse. Blood 93:590–598PubMedGoogle Scholar
  15. 15.
    Vremec D, Shortman K (1997) Dendritic cell subtypes in mouse lymphoid organs: cross-correlation of surface markers, changes with incubation, and differences among thymus, spleen, and lymph nodes. J Immunol 159:565–573PubMedGoogle Scholar
  16. 16.
    De Smedt T (1996) Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J Exp Med 184:1413–1424PubMedGoogle Scholar
  17. 17.
    Robbins S, Walzer T, Dembele D, Thibault C, Defays A, Bessou G et al (2008) Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol 9:R17PubMedGoogle Scholar
  18. 18.
    Heath WR, Carbone FR (2009) Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol 10:1237–1244PubMedGoogle Scholar
  19. 19.
    Lipscomb MF, Masten BJ (2002) Dendritic cells: immune regulators in health and disease. Physiol Rev 82:97–130PubMedGoogle Scholar
  20. 20.
    Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118PubMedGoogle Scholar
  21. 21.
    Zhou LJ, Tedder TF (1996) CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc Natl Acad Sci USA 93:2588–2592PubMedGoogle Scholar
  22. 22.
    Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B et al (1996) Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 196:137–151PubMedGoogle Scholar
  23. 23.
    Ito T, Inaba M, Inaba K, Toki J, Sogo S, Iguchi T et al (1999) A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J Immunol 163:1409–1419PubMedGoogle Scholar
  24. 24.
    Palucka KA, Taquet N, Sanchez-Chapuis F, Gluckman JC (1998) Dendritic cells as the terminal stage of monocyte differentiation. J Immunol 160:4587–4595PubMedGoogle Scholar
  25. 25.
    Larsen CP, Steinman RM, Witmer-Pack M, Hankins DF, Morris PJ, Austyn JM (1990) Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 172:1483–1493PubMedGoogle Scholar
  26. 26.
    Austyn JM, Larsen CP (1990) Migration patterns of dendritic leukocytes. Implications for transplantation. Transplantation 49:1–7PubMedGoogle Scholar
  27. 27.
    Hara M, Kingsley CI, Niimi M, Read S, Turvey SE, Bushell AR et al (2001) IL-30 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J Immunol 166:3789–3796PubMedGoogle Scholar
  28. 28.
    Anderson BE, McNiff J, Yan J, Doyle H, Mamula M, Shlomchik MJ et al (2003) Memory CD4+ T cells do not induce graft-versus-host disease. J Clin Invest 112:101–108PubMedGoogle Scholar
  29. 29.
    Luke PP, Deng JP, Lian D, O’Connell PJ, Garcia B, Jevnikar AM et al (2006) Prolongation of allograft survival by administration of anti-CD45RB monoclonal antibody is due to alteration of CD45RBhi: CD45RBlo T-cell proportions. Am J Transplant 6:2023–2034PubMedGoogle Scholar
  30. 30.
    Xystrakis E, Bernard I, Dejean AS, Alsaati T, Druet P, Saoudi A (2004) Alloreactive CD4 T lymphocytes responsible for acute and chronic graft-versus-host disease are contained within the CD45RChigh but not the CD45RClow subset. Eur J Immunol 34:408–417PubMedGoogle Scholar
  31. 31.
    Lu L, Qian S, Hershberger PA, Rudert WA, Lynch DH, Thomson AW (1997) Fas ligand (CD95L) and B7 expression on dendritic cells provide counter-regulatory signals for T cell survival and proliferation. J Immunol 158:5676–5684PubMedGoogle Scholar
  32. 32.
    Suss G, Shortman K (1996) A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J Exp Med 183:1789–1796PubMedGoogle Scholar
  33. 33.
    Steinman RM, Hawiger D, Nussenzweig MC (2003) Tolerogenic dendritic cells. Ann Rev Immunol 21:685–711Google Scholar
  34. 34.
    Wilson NS, Villadangos JA (2004) Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol Cell Biol 82:91–98PubMedGoogle Scholar
  35. 35.
    Inaba K (1998) Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J Exp Med 188:2163–2173PubMedGoogle Scholar
  36. 36.
    Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M (2005) Resting dendritic cells induce peripheral CD8+ T cell tolerance through PD-1 and CTLA-4. Nature Immunol 6:280–286Google Scholar
  37. 37.
    Reis e Sousa C (2006) Dendritic cells in a mature age. Nat Rev Immunol 6:476–483PubMedGoogle Scholar
  38. 38.
    Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science 248:1349–1356PubMedGoogle Scholar
  39. 39.
    Albert ML, Jegathesan M, Darnell RB (2001) Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nature Immunol 2:1010–1017Google Scholar
  40. 40.
    Menges M, Rossner S, Voigtlander C, Schindler H, Kukutsch NA (2002) Repetitive injections of dendritic cells matured with tumor necrosis factor induce antigen-specific protection of mice from autoimmunity. J Exp Med 195:15–21PubMedGoogle Scholar
  41. 41.
    Sporri R, Reis e Sousa C (2005) Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nature Immunol 6:163–170Google Scholar
  42. 42.
    Dai H, Zhu H, Lei P, Yagita H, Liu J, Wen X et al (2009) Programmed death-1 signaling is essential for the skin allograft protection by alternatively activated dendritic cell infusion in mice. Transplantation 88:864–873PubMedGoogle Scholar
  43. 43.
    Tuettenberg A, Huter E, Hubo M, Horn J, Knop J, Grimbacher B et al (2009) The role of ICOS in directing T cell responses: ICOS-dependent induction of T cell anergy by tolerogenic dendritic cells. J Immunol 182:3349–3356PubMedGoogle Scholar
  44. 44.
    Watts TH (2005) TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23:23–68PubMedGoogle Scholar
  45. 45.
    Buckland M, Jago CB, Fazekasova H, Scott K, Tan PH, George AJ et al (2006) Aspirin-treated human DCs up-regulate ILT-3 and induce hyporesponsiveness and regulatory activity in responder T cells. Am J Transplant 6:2046–2059PubMedGoogle Scholar
  46. 46.
    Penna G, Roncari A, Amuchastegui S, Daniel KC, Berti E, Colonna M et al (2005) Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood 106:3490–3497PubMedGoogle Scholar
  47. 47.
    Hou WS, Van Parijs LA (2004) Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nature Immunol 5:583–589Google Scholar
  48. 48.
    Farquhar CA, Paterson AM, Cobbold SP, Garcia Rueda H, Fairchild PJ, Yates SF et al (2010) Tolerogenicity is not an absolute property of a dendritic cell. Eur J Immunol 40:1728–1737PubMedGoogle Scholar
  49. 49.
    Hilkens CMU, Isaacs JD, Thomson AW (2010) Development of dendritic cell-based immunotherapy for autoimmunity. Int Rev Immunol 29:156–183PubMedGoogle Scholar
  50. 50.
    Piemonti L (1999) Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol 162:6473–6481PubMedGoogle Scholar
  51. 51.
    Colic M, Stojic-Vukanic Z, Pavlovic B, Jandric D, Stefanoska I (2003) Mycophenolate mofetil inhibits differentiation, maturation and allostimulatory function of human monocyte-derived dendritic cells. Clin Exp Immunol 134:63–69PubMedGoogle Scholar
  52. 52.
    Woltman AM, de Fijter JW, Kamerling SW, Paul LC, Daha MR, van Kooten C (2000) The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells. Eur J Immunol 30:1807–1812PubMedGoogle Scholar
  53. 53.
    Woltman AM, van der Kooij SW, Coffer PJ, Offringa R, Daha MR, van Kooten C (2003) Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 101:1439–1445PubMedGoogle Scholar
  54. 54.
    Woltman AM, de Fijter JW, Kamerling SW, van Der Kooij SW, Paul LC, Daha MR et al (2001) Rapamycin induces apoptosis in monocyte- and CD34-derived dendritic cells but not in monocytes and macrophages. Blood 98:174–180PubMedGoogle Scholar
  55. 55.
    Simpson D (2001) Tresperimus: a new agent for transplant tolerance induction. Expert Opin Investig Drugs 10:1381–1386PubMedGoogle Scholar
  56. 56.
    Penna G, Adorini L (2000) 1 Alpha, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164:2405–2411PubMedGoogle Scholar
  57. 57.
    Tan PH, Sagoo P, Chan C, Yates JB, Campbell J, Beutelspacher SC et al (2005) Inhibition of NF-kappa B and oxidative pathways in human dendritic cells by antioxidative vitamins generates regulatory T cells. J Immunol 174:7633–7644PubMedGoogle Scholar
  58. 58.
    Ho LJ, Chang DM, Shiau HY, Chen CH, Hsieh TY, Hsu YL et al (2001) Aspirin differentially regulates endotoxin-induced IL-12 and TNF-alpha production in human dendritic cells. Scand J Rheumatol 30:346–352PubMedGoogle Scholar
  59. 59.
    Hackstein H, Morelli AE, Larregina AT, Ganster RW, Papworth GD, Logar AJ et al (2001) Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells. J Immunol 166:7053–7062PubMedGoogle Scholar
  60. 60.
    Coates PT, Krishnan R, Kireta S, Johnston J, Russ GR (2001) Human myeloid dendritic cells transduced with an adenoviral interleukin-10 gene construct inhibit human skin graft rejection in humanized NOD-scid chimeric mice. Gene Ther 8:1224–1233PubMedGoogle Scholar
  61. 61.
    De Smedt T, Van Mechelen M, De Becker G, Urbain J, Leo O, Moser M (1997) Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 27:1229–1235PubMedGoogle Scholar
  62. 62.
    Della Bella S, Nicola S, Riva A, Biasin M, Clerici M, Villa ML (2004) Functional repertoire of dendritic cells generated in granulocyte macrophage-colony stimulating factor and interferon-{alpha}. J Leukoc Biol 75:106–116PubMedGoogle Scholar
  63. 63.
    Geissmann F, Revy P, Regnault A, Lepelletier Y, Dy M, Brousse N et al (1999) TGF-beta 1 prevents the noncognate maturation of human dendritic Langerhans cells. J Immunol 162:4567–4575PubMedGoogle Scholar
  64. 64.
    Gregori S, Casorati M, Amuchastegui S, Smiroldo S, Davalli AM, Adorini L (2001) Regulatory T cells induced by 1{alpha},25-Dihydroxyvitamin D3 and Mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol 167:1945–1953PubMedGoogle Scholar
  65. 65.
    Griffin MD, Lutz WH, Phan VA, Bachman LA, McKean DJ, Kumar R (2000) Potent inhibition of Dendritic cell differentiation and maturation by Vitamin D analogs. Biochem Biophys Res Comm 270:701–708PubMedGoogle Scholar
  66. 66.
    Lee WC, Zhong C, Qian S, Wan Y, Gauldie J, Mi Z et al (1998) Phenotype, function, and in vivo migration and survival of allogeneic dendritic cell progenitors genetically engineered to express TGF-beta. Transplantation 66:1810–1817PubMedGoogle Scholar
  67. 67.
    McRae BL, Nagai T, Semnani RT, van Seventer JM, van Seventer GA (2000) Interferon-alpha and -beta inhibit the in vitro differentiation of immunocompetent human dendritic cells from CD14(+) precursors. Blood 96:210–217PubMedGoogle Scholar
  68. 68.
    Mehling A, Grabbe S, Voskort M, Schwarz T, Luger TA, Beissert S (2000) Mycophenolate mofetil impairs the maturation and function of murine dendritic cells. J Immunol 165:2374–2381PubMedGoogle Scholar
  69. 69.
    Piemonti L, Monti P, Sironi M, Fraticelli P, Leone BE, Dal Cin E et al (2000) Vitamin D3 affects differentiation, maturation, and function of human Monocyte-derived Dendritic cells. J Immunol 164:4443–4451PubMedGoogle Scholar
  70. 70.
    Vieira PL, Kalinski P, Wierenga EA, Kapsenberg ML, de Jong EC (1998) Glucocorticoids inhibit bioactive IL-12p70 production by in vitro-generated human dendritic cells without affecting their T cell stimulatory potential. J Immunol 161:5245–5251PubMedGoogle Scholar
  71. 71.
    Matasic R, Dietz AB, Vuk-Pavlovic S (1999) Dexamethasone inhibits dendritic cell maturation by redirecting differentiation of a subset of cells. J Leukoc Biol 66:909–914PubMedGoogle Scholar
  72. 72.
    Moser M, De Smedt T, Sornasse T, Tielemans F, Chentoufi AA, Muraille E et al (1995) Glucocorticoids down-regulate dendritic cell function in vitro and in vivo. Eur J Immunol 25:2818–2824PubMedGoogle Scholar
  73. 73.
    Pedersen AE, Gad M, Walter MR, Claesson MH (2004) Induction of regulatory dendritic cells by dexamethasone and 1[alpha],25-Dihydroxyvitamin D3. Immunol Lett 91:63–69PubMedGoogle Scholar
  74. 74.
    Ramirez F, Fowell DJ, Puklavec M, Simmonds S, Mason D (1996) Glucocorticoids promote a TH2 cytokine response by CD4+ T cells in vitro. J Immunol 156:2406–2412PubMedGoogle Scholar
  75. 75.
    Singh S, Aiba S, Manome H, Tagami H (1999) The effects of dexamethasone, cyclosporine, and vitamin D(3) on the activation of dendritic cells stimulated by haptens. Arch Dermatol Res 291:548–554PubMedGoogle Scholar
  76. 76.
    Wissink S, van Heerde EC, vand der Burg B, van der Saag PT (1998) A dual mechanism mediates repression of NF-kappaB activity by glucocorticoids. Mol Endocrinol 12:355–363PubMedGoogle Scholar
  77. 77.
    Woltman AM, van der Kooij SW, de Fijter JW, van Kooten C (2006) Maturation-resistant dendritic cells induce hyporesponsiveness in alloreactive CD45RA+ and CD45RO+ T-cell populations. Am J Transplant 6:2580–2591PubMedGoogle Scholar
  78. 78.
    Xing N, Maldonado ML L, Bachman LA, McKean DJ, Kumar R, Griffin MD (2002) Distinctive dendritic cell modulation by vitamin D(3) and glucocorticoid pathways. Biochem Biophys Res Commun 297:645–652PubMedGoogle Scholar
  79. 79.
    Almawi WY, Beyhum HN, Rahme AA, Rieder MJ (1996) Regulation of cytokine and cytokine receptor expression by glucocorticoids. J Leukoc Biol 60:563–572PubMedGoogle Scholar
  80. 80.
    Kay J, Czop JK (1994) Enhancement of human monocyte beta-glucan receptors by glucocorticoids. Immunol 81:96–102Google Scholar
  81. 81.
    Rea D, van Kooten C, van Meijgaarden KE, Ottenhoff TH, Melief CJ, Offringa R (2000) Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen-presenting cells that secrete IL-10. Blood 95:3162–3167PubMedGoogle Scholar
  82. 82.
    Cumberbatch M, Dearman RJ, Kimber I (1999) Inhibition by dexamethasone of Langerhans cell migration: influence of epidermal cytokine signals. Immunopharmacol 41:235–243Google Scholar
  83. 83.
    Penna G, Amuchastegui S, Giarratana N, Daniel KC, Vulcano M, Sozzani S et al (2007) 1,25-Dihydroxyvitamin D3 selectively modulates Tolerogenic properties in Myeloid but not Plasmacytoid Dendritic cells. J Immunol 178:145–153PubMedGoogle Scholar
  84. 84.
    Griffin MD, Xing N, Kumar R (2004) Gene expression profiles in dendritic cells conditioned by 1[alpha],25-dihydroxyvitamin D3 analog. J Steroid Biochem Mol Biol 89–90:443–448PubMedGoogle Scholar
  85. 85.
    Barrat FJ, Cua DJ, Boonstra A, Richards DF, Crain C, Savelkoul HF et al (2002) In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 195:603–616PubMedGoogle Scholar
  86. 86.
    Hackstein H, Thomson AW (2004) Dendritic cells: emerging pharmacological targets of immunosuppressive drugs. Nat Rev Immunol 4:24–34PubMedGoogle Scholar
  87. 87.
    Chen T, Guo J, Yang M, Han C, Zhang M, Chen W et al (2004) Cyclosporin A impairs dendritic cell migration by regulating chemokine receptor expression and inhibiting cyclooxygenase-2 expression. Blood 103:413–421PubMedGoogle Scholar
  88. 88.
    Scheinman RI, Cogswell PC, Lofquist AK, Baldwin AS Jr (1995) Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270:283–286PubMedGoogle Scholar
  89. 89.
    D’Ambrosio D, Cippitelli M, Cocciolo MG, Mazzeo D, Di Lucia P, Lang R et al (1998) Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest 101:252–262PubMedGoogle Scholar
  90. 90.
    Hoves S, Krause SW, Herfarth H, Halbritter D, Zhang HG, Mountz JD et al (2004) Elimination of activated but not resting primary human CD4+ and CD8+ T cells by Fas ligand (FasL/CD95L)-expressing Killer-dendritic cells. Immunobiol 208:463–475Google Scholar
  91. 91.
    Peche H, Trinite B, Martinet B, Cuturi MC (2005) Prolongation of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors. Am J Transplant 5:255–267PubMedGoogle Scholar
  92. 92.
    Feili-Hariri M, Falkner DH, Gambotto A, Papworth GD, Watkins SC, Robbins PD et al (2003) Dendritic cells transduced to express interleukin-4 prevent diabetes in nonobese diabetic mice with advanced insulitis. Hum Gene Ther 14:13–23PubMedGoogle Scholar
  93. 93.
    Gorczynski RM, Bransom J, Cattral M, Huang X, Lei J, Xiaorong L et al (2000) Synergy in induction of increased renal allograft survival after portal vein infusion of dendritic cells transduced to express TGFbeta and IL-10, along with administration of CHO cells expressing the regulatory molecule OX-2. Clin Immunol 95:182–189PubMedGoogle Scholar
  94. 94.
    Isomura I, Tsujimura K, Morita A (2006) Antigen-specific peripheral tolerance induced by topical application of NF-kappaB decoy oligodeoxynucleotide. J Invest Dermatol 126:97–104PubMedGoogle Scholar
  95. 95.
    Moseman EA, Liang X, Dawson AJ, Panoskaltsis-Mortari A, Krieg AM, Liu Y-J et al (2004) Human Plasmacytoid Dendritic cells activated by CpG Oligodeoxynucleotides induce the generation of CD4+ CD25+ regulatory T cells. J Immunol 173:4433–4442PubMedGoogle Scholar
  96. 96.
    Lee I, Wang L, Wells AD, Dorf ME, Ozkaynak E, Hancock WW (2005) Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J Exp Med 201:1037–1044PubMedGoogle Scholar
  97. 97.
    Lu L, Li W, Fu F, Chambers FG, Qian S, Fung JJ et al (1997) Blockade of the CD40-CD40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival. Transplantation 64:1808–1815PubMedGoogle Scholar
  98. 98.
    Szot GL, Zhou P, Rulifson I, Wang J, Guo Z, Kim O et al (2001) Different mechanisms of cardiac allograft rejection in wildtype and CD28-deficient mice. Am J Transplant 1:38–46PubMedGoogle Scholar
  99. 99.
    Turka LA, Linsley PS, Lin H, Brady W, Leiden JM, Wei RQ et al (1992) T cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc Natl Acad Sci USA 89:11102–11105PubMedGoogle Scholar
  100. 100.
    Lechler RI, Batchelor JR (1982) Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J Exp Med 155:31–41PubMedGoogle Scholar
  101. 101.
    Lin T, Zhou W, Farrar CA, Hargreaves REG, Sheerin NS, Sacks SH (2006) Deficiency of C4 from donor or recipient mouse fails to prevent renal allograft rejection. Am J Pathol 168:1241–1248PubMedGoogle Scholar
  102. 102.
    Lu L, Lee WC, Takayama T, Qian S, Gambotto A, Robbins PD et al (1999) Genetic engineering of dendritic cells to express immunosuppressive molecules (viral IL-10, TGF-beta, and CTLA4Ig). J Leukoc Biol 66:293–296PubMedGoogle Scholar
  103. 103.
    Zheng XX, Markees TG, Hancock WW, Li Y, Greiner DL, Li XC et al (1999) CTLA4 Signals are required to optimally induce allograft tolerance with combined donor-specific transfusion and anti-CD154 Monoclonal antibody treatment. J Immunol 162:4983–4990PubMedGoogle Scholar
  104. 104.
    Iwakoshi NN, Mordes JP, Markees TG, Phillips NE, Rossini AA, Greiner DL (2000) Treatment of Allograft recipients with donor-specific transfusion and anti-CD154 antibody leads to deletion of alloreactive CD8+ T cells and prolonged graft survival in a CTLA4-dependent manner. J Immunol 164:512–521PubMedGoogle Scholar
  105. 105.
    Pearson TC, Alexander DZ, Hendrix R, Elwood ET, Linsley PS, Winn KJ et al (1996) CTLA4-Ig plus bone marrow induces long-term allograft survival and donor specific unresponsiveness in the murine model. Evidence for hematopoietic chimerism. Transplantation 61:997PubMedGoogle Scholar
  106. 106.
    Cella M, Facchetti F, Lanzavecchia A, Colonna M (2000) Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 1:305–310PubMedGoogle Scholar
  107. 107.
    Mirenda V, Berton I, Read J, Cook T, Smith J, Dorling A et al (2004) Modified dendritic cells coexpressing self and allogeneic major histocompatability complex molecules: an efficient way to induce indirect pathway regulation. J Am Soc Nephrol 15:987–997PubMedGoogle Scholar
  108. 108.
    Salama AD, Womer KL, Sayegh MH (2007) Clinical transplantation tolerance: many rivers to cross. J Immunol 178:5419–5423PubMedGoogle Scholar
  109. 109.
    Sho M, Kishimoto K, Harada H, Livak M, Sanchez-Fueyo A, Yamada A et al (2005) Requirements for induction and maintenance of peripheral tolerance in stringent allograft models. Proc Natl Acad Sci USA 102:13230–13235PubMedGoogle Scholar
  110. 110.
    Rosenberg AS, Singer A (1992) Cellular basis of skin Allograft rejection: an in vivo model of immune-mediated tissue destruction. Annu Rev Immunol 10:333–360PubMedGoogle Scholar
  111. 111.
    Youssef AR, Otley C, Mathieson PW, Smith RM (2002) Effector mechanisms in murine allograft rejection: comparison of skin and heart grafts in fully allogeneic and minor histocompatibility antigen-mismatched strain combinations. Transpl Int 15:302–309PubMedGoogle Scholar
  112. 112.
    Youssef AR, Otley C, Mathieson PW, Smith RM (2004) Role of CD4+ and CD8+ T cells in murine skin and heart allograft rejection across different antigenic desparities. Transpl Immunol 13:297–304PubMedGoogle Scholar
  113. 113.
    Wang Z, Castellaneta A, De Creus A, Shufesky WJ, Morelli AE, Thomson AW (2004) Heart, but not skin, allografts from donors lacking Flt3 ligand exhibit markedly prolonged survival time. J Immunol 172:5924–5930PubMedGoogle Scholar
  114. 114.
    Matasic R, Dietz AB, Vuk-Pavlovic S (2000) Cyclooxygenase-independent inhibition of dendritic cell maturation by aspirin. Immunol 101:53–60Google Scholar
  115. 115.
    Josien R, Heslan M, Brouard S, Soulillou JP, Cuturi MC (1998) Critical requirement for graft passenger leukocytes in allograft tolerance induced by donor blood transfusion. Blood 92:4539–4544PubMedGoogle Scholar
  116. 116.
    Sun J, McCaughan GW, Gallagher ND, Sheil AG, Bishop GA (1995) Deletion of spontaneous rat liver allograft acceptance by donor irradiation. Transplantation 60:233–236PubMedGoogle Scholar
  117. 117.
    Lechler R, Ng WF, Steinman RM (2001) Dendritic cells in transplantation–friend or foe? Immunity 14:357–368PubMedGoogle Scholar
  118. 118.
    Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264:961–965PubMedGoogle Scholar
  119. 119.
    Bevan MJ (1976) Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143:1283–1288PubMedGoogle Scholar
  120. 120.
    Kushwah R, Oliver JR, Zhang J, Siminovitch KA, Hu J (2009) Apoptotic Dendritic cells induce tolerance in mice through suppression of Dendritic cell maturation and induction of antigen-specific regulatory T cells. J Immunol 183:7104–7118PubMedGoogle Scholar
  121. 121.
    Wang Z, Larregina AT, Shufesky WJ, Perone MJ, Montecalvo A, Zahorchak AF et al (2006) Use of the inhibitory effect of apoptotic cells on Dendritic cells for graft survival via T-cell deletion and regulatory T cells. Am J Transpl 6:1297–1311Google Scholar
  122. 122.
    Wang Z, Shufesky WJ, Montecalvo A, Divito SJ, Larregina AT, Morelli AE (2009) In situ-targeting of dendritic cells with donor-derived apoptotic cells restrains indirect allorecognition and ameliorates allograft vasculopathy. PLoS ONE 4:e4940PubMedGoogle Scholar
  123. 123.
    Divito SJ, Wang Z, Shufesky WJ, Liu Q, Tkacheva OA, Montecalvo A et al (2010) Endogenous dendritic cells mediate the effects of intravenously injected therapeutic immunosuppressive dendritic cells in transplantation. Blood 116:2694–2705PubMedGoogle Scholar
  124. 124.
    Albert ML, Pearce SFA, Francisco LM, Sauter B, Roy P (1998) Immature dendritic cells phagocytose apoptotic cells via v5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 188:1359–1368PubMedGoogle Scholar
  125. 125.
    Munz C, Bickham KL, Subklewe M, Tsang ML, Chahroudi A et al (2000) Human CD4(+) T lymphocytes consistently respond to the latent Epstein-Barr virus nuclear antigen EBNA1. J Exp Med 191:1649–1660PubMedGoogle Scholar
  126. 126.
    Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M et al (1999) Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189:371–380PubMedGoogle Scholar
  127. 127.
    Rodriguez A, Regnault A, Kleijmeer M, Ricciardi-Castagnoli P, Amigorena S (1999) Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1:362–368PubMedGoogle Scholar
  128. 128.
    Williams MA, Onami TM, Adams AB, Durham MM, Pearson TC, Ahmed R et al (2002) Cutting edge: persistent viral infection prevents tolerance induction and escapes immune control following CD28/CD40 blockade-based regimen. J Immunol 169:5387–5391PubMedGoogle Scholar
  129. 129.
    Yu G, Xu X, Vu MD, Kilpatrick ED, Li XC (2006) NK cells promote transplant tolerance by killing donor antigen-presenting cells. J Exp Med 203:1851–1858PubMedGoogle Scholar
  130. 130.
    Garrod KR, Liu FC, Forrest LE, Parker I, Kang SM, Cahalan MD (2010) NK cell patrolling and elimination of donor-derived dendritic cells favor indirect alloreactivity. J Immunol 184:2329–2336PubMedGoogle Scholar
  131. 131.
    Turnquist HR, Raimondi G, Zahorchak AF, Fischer RT, Wang Z, Thomson AW (2007) Rapamycin-conditioned dendritic cells are poor stimulators of Allogeneic CD4+ T Cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J Immunol 178:7018–7031PubMedGoogle Scholar
  132. 132.
    Herrera OB, Golshayan D, Tibbott R, Salcido Ochoa F, James MJ, Marelli-Berg FM et al (2004) A novel pathway of alloantigen presentation by dendritic cells. J Immunol 173:4828–4837PubMedGoogle Scholar
  133. 133.
    Bedford P, Garner K, Knight SC (1999) MHC class II molecules transferred between allogeneic dendritic cells stimulate primary mixed leukocyte reactions. Int Immunol 11:1739–1744PubMedGoogle Scholar
  134. 134.
    Brown K, Sacks SH, Wong W (2008) Extensive and bidirectional transfer of major histocompatibility complex class II molecules between donor and recipient cells in vivo following solid organ transplantation. FASEB J 22:3776–3784PubMedGoogle Scholar
  135. 135.
    Jiang S, Herrera O, Lechler RI (2004) New spectrum of allorecognition pathways: implications for graft rejection and transplantation tolerance. Curr Opin Immunol 16:550–557PubMedGoogle Scholar
  136. 136.
    Smyth LA, Herrera OB, Golshayan D, Lombardi G, Lechler RI (2006) A novel pathway of antigen presentation by dendritic and endothelial cells: implications for allorecognition and infectious diseases. Transplantation 82(1 Suppl):S15–S18PubMedGoogle Scholar
  137. 137.
    Lee RS, Grusby MJ, Glimcher LH, Winn HJ, Auchincloss H Jr (1994) Indirect recognition by helper cells can induce donor-specific cytotoxic T lymphocytes in vivo. J Exp Med 179:865–872PubMedGoogle Scholar
  138. 138.
    Wise MP, Bemelman F, Cobbold SP, Waldmann H (1998) Cutting edge: linked suppression of skin graft rejection can operate through indirect recognition. J Immunol 161:5813–5816PubMedGoogle Scholar
  139. 139.
    Liu Y, Janeway CA Jr (1992) Cells that present both specific ligand and costimulatory activity are the most efficient inducers of clonal expansion of normal CD4 T cells. Proc Natl Acad Sci USA 89:3845–3849PubMedGoogle Scholar
  140. 140.
    Mandelbrot DA, Kishimoto K, Auchincloss H Jr, Sharpe AH, Sayegh MH (2001) Rejection of mouse cardiac allografts by costimulation in trans. J Immunol 167:1174–1178PubMedGoogle Scholar
  141. 141.
    Smyth LA, Harker N, Turnbull W, El-Doueik H, Klavinskis L, Kioussis D et al (2008) The relative efficiency of acquisition of MHC:peptide complexes and cross-presentation depends on dendritic cell type. J Immunol 181:3212–3220PubMedGoogle Scholar
  142. 142.
    Andre F, Chaput N, Schartz NE, Flament C, Aubert N, Bernard J et al (2004) Exosomes as potent cell-free peptide-based vaccine. I. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells. J Immunol 172:2126–2136PubMedGoogle Scholar
  143. 143.
    Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3:1156–1162PubMedGoogle Scholar
  144. 144.
    Montecalvo A, Shufesky WJ, Stolz DB, Sullivan MG, Wang Z, Divito SJ et al (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 180:3081–3090PubMedGoogle Scholar
  145. 145.
    Peche H, Heslan M, Usal C, Amigorena S, Cuturi MC (2003) Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection. Transplantation 27:1503–1510Google Scholar
  146. 146.
    Regateiro FS, Howie D, Nolan KF, Agorogiannis EI, Greaves DR, Cobbold SP et al (2011) Generation of anti-inflammatory adenosine byleukocytes is regulated by TGF-beta. Eur J Immunol 41:2955–2965PubMedGoogle Scholar
  147. 147.
    Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z (2011) Cancer exosomes express CD39 and CD73, which suppress T Cells through Adenosine production. J Immunol 187:676–683PubMedGoogle Scholar
  148. 148.
    Yegutkin GG, Henttinen T, Samburski SS, Spychala J, Jalkanen S (2002) The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochem J 367:121–128PubMedGoogle Scholar
  149. 149.
    Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265PubMedGoogle Scholar
  150. 150.
    Finkelman FD, Lees A, Birnbaum R, Gause WC, Morris SC (1996) Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J Immunol 157:1406–1414PubMedGoogle Scholar
  151. 151.
    Tanriver Y, Ratnasothy K, Bucy RP, Lombardi G, Lechler R (2010) Targeting MHC class I monomers to dendritic cells inhibits the indirect pathway of allorecognition and the production of IgG alloantibodies leading to long-term allograft survival. J Immunol 184:1757–1764PubMedGoogle Scholar
  152. 152.
    Martin P, Del Hoyo GM, Anjuere F, Arias CF, Vargas HH, Fernandez LA et al (2002) Characterization of a new subpopulation of mouse CD8alpha+ B220+ dendritic cells endowed with type 1 interferon production capacity and tolerogenic potential. Blood 100:383–390PubMedGoogle Scholar
  153. 153.
    Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H et al (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117:2570–2582PubMedGoogle Scholar
  154. 154.
    Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nature Immunol 5:1219–1226Google Scholar
  155. 155.
    Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A, Tacke F et al (2006) Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 7:652–662PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Matthew Buckland
    • 1
  • Lesley Smyth
    • 2
  • Robert Lechler
    • 2
  • Giovanna Lombardi
    • 2
  1. 1.Centre for Immunology and Infectious DiseaseBlizard Institute, Barts and the London School of Medicine and Dentistry, Royal London HospitalLondonUK
  2. 2.Medical Research Council (MRC) Centre for TransplantationKing’s College London, King’s Health Partners, Guy’s HospitalLondonUK

Personalised recommendations