The Induction of Mixed Chimerism Using ES Cell-Derived Hematopoietic Stem Cells

  • Francesca Milanetti
  • You-Hong Cheng
  • Richard K. Burt
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


The use of haematopoietic stem cell (HSC) transplantation for the establishment of mixed chimerism generally leads to durable immune tolerance to allografts in animal models of transplantation. The development of reduced intensity regimens for achieving allogeneic haematopoietic engraftment across major histocompatibility complex (MHC) barriers and its recent application in clinical trials of kidney transplantation is encouraging. Embryonic stem cell-derived HSCs have lower immunogenicity and could, therefore, potentially be safer, inducing mixed chimerism and tolerance with minimal host pre-treatment and risk of graft versus host disease, despite crossing MHC barriers.


Major Histocompatibility Complex Total Body Irradiation Inner Cell Mass Haematopoietic Stem Cell Transplantation Haematopoietic Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Owen RD (1945) Immunogenetic consequences of vascular anastomoses between bovine twins. Science 102:400–401PubMedGoogle Scholar
  2. 2.
    Billingham RE, Brent L, Medawar PB (1953) Actively acquired tolerance of foreign cells. Nature 172:603–606PubMedGoogle Scholar
  3. 3.
    Main JM, Prehn RT (1955) Successful skin homografts after the administration of high dosage X radiation and homologous bone marrow. J Natl Cancer Inst 15:1023–1029PubMedGoogle Scholar
  4. 4.
    Sharabi Y, Sachs DH (1989) Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J Exp Med 169:493–502PubMedGoogle Scholar
  5. 5.
    Ildstad ST, Sachs DH (1984) Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 307:168–170PubMedGoogle Scholar
  6. 6.
    Scandling JD, Busque S, Dejbakhsh-Jones S, Benike C, Millan MT, Shizuru JA, Hoppe RT, Lowsky R, Engleman EG, Strober S (2008) Tolerance and chimerism after renal and hematopoietic-cell transplantation. N Engl J Med 358:362–368PubMedGoogle Scholar
  7. 7.
    Kawai T, Cosimi AB, Spitzer TR et al (2008) HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 358:353–361PubMedGoogle Scholar
  8. 8.
    Sykes M, Sheard MA, Sachs DH (1988) Graft-versus-host-related immunosuppression is induced in mixed chimeras by alloresponses against either host or donor lymphohematopoietic cells. J Exp Med 168:2391–2396PubMedGoogle Scholar
  9. 9.
    Singer A, Hathcock KS, Hodes RJ (1981) Self recognition in allogeneic radiation bone marrow chimeras. A radiation-resistant host element dictates the self specificity and immune response gene phenotype of T-helper cells. J Exp Med 153:1286–1301PubMedGoogle Scholar
  10. 10.
    Tomita Y, Khan A, Sykes M (1994) Role of intrathymic clonal deletion and peripheral anergy in transplantation tolerance induced by bone marrow transplantation in mice conditioned with a nonmyeloablative regimen. J Immunol 153:1087–1098PubMedGoogle Scholar
  11. 11.
    Tomita Y, Sachs DH, Khan A, Sykes M (1996) Additional monoclonal antibody (mAB) injections can replace thymic irradiation to allow induction of mixed chimerism and tolerance in mice receiving bone marrow transplantation after conditioning with anti-T cell mABs and 3-Gy whole body irradiation. Transplantation 61:469–477PubMedGoogle Scholar
  12. 12.
    Wekerle T, Kurtz J, Ito H, Ronquillo JV, Dong V, Zhao G, Shaffer J, Sayegh MH, Sykes M (2000) Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat Med 6:464–469PubMedGoogle Scholar
  13. 13.
    Guo Z, Wang J, Dong Y et al (2003) Long-term survival of intestinal allografts induced by costimulation blockade, busulfan and donor bone marrow infusion. Am J Transplant 3:1091–1098PubMedGoogle Scholar
  14. 14.
    Manilay JO, Pearson DA, Sergio JJ, Swenson KG, Sykes M (1998) Intrathymic deletion of alloreactive T cells in mixed bone marrow chimeras prepared with a nonmyeloablative conditioning regimen. Transplantation 66:96–102PubMedGoogle Scholar
  15. 15.
    Cobbold SP, Martin G, Qin S, Waldmann H (1986) Monoclonal antibodies to promote marrow engraftment and tissue graft tolerance. Nature 323:164–166PubMedGoogle Scholar
  16. 16.
    Wekerle T, Nikolic B, Pearson DA, Swenson KG, Sykes M (2002) Minimal conditioning required in a murine model of T cell depletion, thymic irradiation and high-dose bone marrow transplantation for the induction of mixed chimerism and tolerance. Transpl Int 15:248–253PubMedGoogle Scholar
  17. 17.
    Huang CA, Fuchimoto Y, Scheier-Dolberg R, Murphy MC, Neville DM Jr, Sachs DH (2000) Stable mixed chimerism and tolerance using a nonmyeloablative preparative regimen in a large-animal model. J Clin Invest 105:173–181PubMedGoogle Scholar
  18. 18.
    Adams AB, Durham MM, Kean L et al (2001) Costimulation blockade, busulfan, and bone marrow promote titratable macrochimerism, induce transplantation tolerance, and correct genetic hemoglobinopathies with minimal myelosuppression. J Immunol 167:1103–1111PubMedGoogle Scholar
  19. 19.
    Wekerle T, Sayegh MH, Hill J, Zhao Y, Chandraker A, Swenson KG, Zhao G, Sykes M (1998) Extrathymic T cell deletion and allogeneic stem cell engraftment induced with costimulatory blockade is followed by central T cell tolerance. J Exp Med 187:2037–2044PubMedGoogle Scholar
  20. 20.
    Wekerle T, Sayegh MH, Ito H, Hill J, Chandraker A, Pearson DA, Swenson KG, Zhao G, Sykes M (1999) Anti-CD154 or CTLA4Ig obviates the need for thymic irradiation in a non-myeloablative conditioning regimen for the induction of mixed hematopoietic chimerism and tolerance. Transplantation 68:1348–1355PubMedGoogle Scholar
  21. 21.
    Williams MA, Trambley J, Ha J, Adams AB, Durham MM, Rees P, Cowan SR, Pearson TC, Larsen CP (2000) Genetic characterization of strain differences in the ability to mediate CD40/CD28-independent rejection of skin allografts. J Immunol 165:6849–6857PubMedGoogle Scholar
  22. 22.
    Kirk AD, Harlan DM, Armstrong NN, Davis TA, Dong Y, Gray GS, Hong X, Thomas D, Fechner JH Jr, Knechtle SJ (1997) CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci USA 94:8789–8794PubMedGoogle Scholar
  23. 23.
    Taylor PA, Lees CJ, Waldmann H, Noelle RJ, Blazar BR (2001) Requirements for the promotion of allogeneic engraftment by anti-CD154 (anti-CD40L) monoclonal antibody under nonmyeloablative conditions. Blood 98:467–474PubMedGoogle Scholar
  24. 24.
    Ito H, Kurtz J, Shaffer J, Sykes M (2001) CD4 T cell-mediated alloresistance to fully MHC-mismatched allogeneic bone marrow engraftment is dependent on CD40-CD40 ligand interactions, and lasting T cell tolerance is induced by bone marrow transplantation with initial blockade of this pathway. J Immunol 166:2970–2981PubMedGoogle Scholar
  25. 25.
    Quesenberry PJ, Zhong S, Wang H, Stewart M (2001) Allogeneic chimerism with low-dose irradiation, antigen presensitization, and costimulator blockade in H-2 mismatched mice. Blood 97:557–564PubMedGoogle Scholar
  26. 26.
    Seung E, Iwakoshi N, Woda BA, Markees TG, Mordes JP, Rossini AA, Greiner DL (2000) Allogeneic hematopoietic chimerism in mice treated with sublethal myeloablation and anti-CD154 antibody: absence of graft-versus-host disease, induction of skin allograft tolerance, and prevention of recurrent autoimmunity in islet-allografted NOD/Lt mice. Blood 95:2175–2182PubMedGoogle Scholar
  27. 27.
    Seung E, Mordes JP, Rossini AA, Greiner DL (2003) Hematopoietic chimerism and central tolerance created by peripheral-tolerance induction without myeloablative conditioning. J Clin Invest 112:795–808PubMedGoogle Scholar
  28. 28.
    Durham MM, Bingaman AW, Adams AB, Ha J, Waitze SY, Pearson TC, Larsen CP (2000) Cutting edge: administration of anti-CD40 ligand and donor bone marrow leads to hemopoietic chimerism and donor-specific tolerance without cytoreductive conditioning. J Immunol 165:1–4PubMedGoogle Scholar
  29. 29.
    Blaha P, Bigenzahn S, Koporc Z et al (2003) The influence of immunosuppressive drugs on tolerance induction through bone marrow transplantation with costimulation blockade. Blood 101:2886–2893PubMedGoogle Scholar
  30. 30.
    Bigenzahn S, Blaha P, Koporc Z et al (2005) The role of non-deletional tolerance mechanisms in a murine model of mixed chimerism with costimulation blockade. Am J Transplant 5:1237–1247PubMedGoogle Scholar
  31. 31.
    Kean LS, Durham MM, Adams AB, Hsu LL, Perry JR, Dillehay D, Pearson TC, Waller EK, Larsen CP, Archer DR (2002) A cure for murine sickle cell disease through stable mixed chimerism and tolerance induction after nonmyeloablative conditioning and major histocompatibility complex-mismatched bone marrow transplantation. Blood 99:1840–1849PubMedGoogle Scholar
  32. 32.
    Blaha P, Bigenzahn S, Koporc Z, Sykes M, Muehlbacher F, Wekerle T (2005) Short-term immunosuppression facilitates induction of mixed chimerism and tolerance after bone marrow transplantation without cytoreductive conditioning. Transplantation 80:237–243PubMedGoogle Scholar
  33. 33.
    Kean LS, Hamby K, Koehn B, Lee E, Coley S, Stempora L, Adams AB, Heiss E, Pearson TC, Larsen CP (2006) NK cells mediate costimulation blockade-resistant rejection of allogeneic stem cells during nonmyeloablative transplantation. Am J Transplant 6:292–304PubMedGoogle Scholar
  34. 34.
    Strober S, Modry DL, Hoppe RT et al (1984) Induction of specific unresponsiveness to heart allografts in mongrel dogs treated with total lymphoid irradiation and antithymocyte globulin. J Immunol 132:1013–1018PubMedGoogle Scholar
  35. 35.
    Muramatsu K, Kuriyama R, You-Xin S, Hashimoto T, Matsunaga T, Taguchi T (2008) Chimerism studies as an approach for the induction of tolerance to extremity allografts. J Plast Reconstr Aesthet Surg 61:1009–1015PubMedGoogle Scholar
  36. 36.
    Yu P, Xiong S, He Q, Chu Y, Lu C, Ramlogan CA, Steel JC (2009) Induction of allogeneic mixed chimerism by immature dendritic cells and bone marrow transplantation leads to prolonged tolerance to major histocompatibility complex disparate allografts. Immunology 127:500–511PubMedGoogle Scholar
  37. 37.
    Pan H, Zhao K, Wang L, Zheng Y, Zhang G, Mai H, Han Y, Yang L, Guo S (2010) Mesenchymal stem cells enhance the induction of mixed chimerism and tolerance to rat hind-limb allografts after bone marrow transplantation. J Surg Res 160:315–324Google Scholar
  38. 38.
    Pilat N, Baranyi U, Klaus C, Jaeckel E, Mpofu N, Wrba F, Golshayan D, Muehlbacher F, Wekerle T (2010) Treg-therapy allows mixed chimerism and transplantation tolerance without cytoreductive conditioning. Am J Transplant 10:751-762Google Scholar
  39. 39.
    Czechowicz A, Kraft D, Weissman IL, Bhattacharya D (2007) Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318:1296–1299PubMedGoogle Scholar
  40. 40.
    Storb R, Yu C, Wagner JL, Deeg HJ, Nash RA, Kiem HP, Leisenring W, Shulman H (1997) Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation. Blood 89:3048–3054PubMedGoogle Scholar
  41. 41.
    Storb R, Yu C, Zaucha JM, Deeg HJ, Georges G, Kiem HP, Nash RA, McSweeney PA, Wagner JL (1999) Stable mixed hematopoietic chimerism in dogs given donor antigen, CTLA4Ig, and 100 cGy total body irradiation before and pharmacologic immunosuppression after marrow transplant. Blood 94:2523–2529PubMedGoogle Scholar
  42. 42.
    Kuhr CS, Allen MD, Junghanss C, Zaucha JM, Marsh CL, Yunusov M, Zellme E, Little MT, Torok-Storb B, Storb R (2002) Tolerance to vascularized kidney grafts in canine mixed hematopoietic chimeras. Transplantation 73:1487–1492PubMedGoogle Scholar
  43. 43.
    Graves SS, Hogan W, Kuhr CS et al (2007) Stable trichimerism after marrow grafting from 2 DLA-identical canine donors and nonmyeloablative conditioning. Blood 110:418–423PubMedGoogle Scholar
  44. 44.
    Gleit ZL, Fuchimoto Y, Yamada K, Melendy E, Scheier-Dolberg R, Monajati L, Coburn RC, Neville DM Jr, Sachs DH, Huang CA (2002) Variable relationship between chimerism and tolerance after hematopoietic cell transplantation without myelosuppressive conditioning. Transplantation 74:1535–1544PubMedGoogle Scholar
  45. 45.
    Kawai T, Poncelet A, Sachs DH et al (1999) Long-term outcome and alloantibody production in a non-myeloablative regimen for induction of renal allograft tolerance. Transplantation 68:1767–1775PubMedGoogle Scholar
  46. 46.
    Kawai T, Sogawa H, Boskovic S et al (2004) CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates. Am J Transplant 4:1391–1398PubMedGoogle Scholar
  47. 47.
    Kawai T, Cosimi AB, Wee SL et al (2002) Effect of mixed hematopoietic chimerism on cardiac allograft survival in cynomolgus monkeys. Transplantation 73:1757–1764PubMedGoogle Scholar
  48. 48.
    Nikolic B, Khan A, Sykes M (2001) Induction of tolerance by mixed chimerism with nonmyeloblative host conditioning: the importance of overcoming intrathymic alloresistance. Biol Blood Marrow Transplant 7:144–153PubMedGoogle Scholar
  49. 49.
    Kawai T, Andrews D, Colvin RB, Sachs DH, Cosimi AB (2000) Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 6:114Google Scholar
  50. 50.
    Kean LS, Gangappa S, Pearson TC, Larsen CP (2006) Transplant tolerance in non-human primates: progress, current challenges and unmet needs. Am J Transplant 6:884–893PubMedGoogle Scholar
  51. 51.
    Sayegh MH, Fine NA, Smith JL, Rennke HG, Milford EL, Tilney NL (1991) Immunologic tolerance to renal allografts after bone marrow transplants from the same donors. Ann Intern Med 114:954–955PubMedGoogle Scholar
  52. 52.
    Helg C, Chapuis B, Bolle JF, Morel P, Salomon D, Roux E, Antonioli V, Jeannet M, Leski M (1994) Renal transplantation without immunosuppression in a host with tolerance induced by allogeneic bone marrow transplantation. Transplantation 58:1420–1422PubMedGoogle Scholar
  53. 53.
    Jacobsen N, Taaning E, Ladefoged J, Kristensen JK, Pedersen FK (1994) Tolerance to an HLA-B, DR disparate kidney allograft after bone-marrow transplantation from same donor. Lancet 343:800PubMedGoogle Scholar
  54. 54.
    Sorof JM, Koerper MA, Portale AA, Potter D, DeSantes K, Cowan M (1995) Renal transplantation without chronic immunosuppression after T cell-depleted, HLA-mismatched bone marrow transplantation. Transplantation 59:1633–1635PubMedGoogle Scholar
  55. 55.
    Butcher JA, Hariharan S, Adams MB, Johnson CP, Roza AM, Cohen EP (1999) Renal transplantation for end-stage renal disease following bone marrow transplantation: a report of six cases, with and without immunosuppression. Clin Transplant 13:330–335PubMedGoogle Scholar
  56. 56.
    Sellers MT, Deierhoi MH, Curtis JJ, Gaston RS, Julian BA, Lanier DC Jr, Diethelm AG (2001) Tolerance in renal transplantation after allogeneic bone marrow transplantation-6-year follow-up. Transplantation 71:1681–1683PubMedGoogle Scholar
  57. 57.
    Hamawi K, De Magalhaes-Silverman M, Bertolatus JA (2003) Outcomes of renal transplantation following bone marrow transplantation. Am J Transplant 3:301–305PubMedGoogle Scholar
  58. 58.
    Svendsen UG, Aggestrup S, Heilmann C, Jacobsen N, Koch C, Larsen B, Svejgaard A, Thisted B, Petterson G (1995) Transplantation of a lobe of lung from mother to child following previous transplantation with maternal bone marrow. Eur Respir J 8:334–337PubMedGoogle Scholar
  59. 59.
    Kadry Z, Mullhaupt B, Renner EL, Bauerfeind P, Schanz U, Pestalozzi BC, Studer G, Zinkernagel R, Clavien PA (2003) Living donor liver transplantation and tolerance: a potential strategy in cholangiocarcinoma. Transplantation 76:1003–1006PubMedGoogle Scholar
  60. 60.
    Gajewski JL, Ippoliti C, Ma Y, Champlin R (2002) Discontinuation of immunosuppression for prevention of kidney graft rejection after receiving a bone marrow transplant from the same HLA identical sibling donor. Am J Hematol 71:311–313PubMedGoogle Scholar
  61. 61.
    Matthes-Martin S, Peters C, Konigsrainer A et al (2000) Successful stem cell transplantation following orthotopic liver transplantation from the same haploidentical family donor in a girl with hemophagocytic lymphohistiocytosis. Blood 96:3997–3999PubMedGoogle Scholar
  62. 62.
    Ringden O, Soderdahl G, Mattsson J et al (2000) Transplantation of autologous and allogeneic bone marrow with liver from a cadaveric donor for primary liver cancer. Transplantation 69:2043–2048PubMedGoogle Scholar
  63. 63.
    Dey B, Sykes M, Spitzer TR (1998) Outcomes of recipients of both bone marrow and solid organ transplants. Rev Med 77:355–369 (Baltimore)Google Scholar
  64. 64.
    Lowsky R, Takahashi T, Liu YP et al (2005) Protective conditioning for acute graft-versus-host disease. N Engl J Med 353:1321–1331PubMedGoogle Scholar
  65. 65.
    Baron F, Baker JE, Storb R et al (2004) Kinetics of engraftment in patients with hematologic malignancies given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood 104:2254–2262PubMedGoogle Scholar
  66. 66.
    Dey BR, McAfee S, Colby C, Sackstein R, Saidman S, Tarbell N, Sachs DH, Sykes M, Spitzer TR (2003) Impact of prophylactic donor leukocyte infusions on mixed chimerism, graft-versus-host disease, and antitumor response in patients with advanced hematologic malignancies treated with nonmyeloablative conditioning and allogeneic bone marrow transplantation. Biol Blood Marrow Transplant 9:320–329PubMedGoogle Scholar
  67. 67.
    Khouri IF, McLaughlin P, Saliba RM et al (2008) Eight-year experience with allogeneic stem cell transplantation for relapsed follicular lymphoma after nonmyeloablative conditioning with fludarabine, cyclophosphamide, and rituximab. Blood 111:5530–5536PubMedGoogle Scholar
  68. 68.
    Spitzer TR, McAfee SL, Dey BR et al (2003) Nonmyeloablative haploidentical stem-cell transplantation using anti-CD2 monoclonal antibody (MEDI-507)-based conditioning for refractory hematologic malignancies. Transplantation 75:1748–1751PubMedGoogle Scholar
  69. 69.
    Fudaba Y, Spitzer TR, Shaffer J et al (2006) Myeloma responses and tolerance following combined kidney and nonmyeloablative marrow transplantation: in vivo and in vitro analyses. Am J Transplant 6:2121–2133PubMedGoogle Scholar
  70. 70.
    Spitzer TR, Delmonico F, Tolkoff-Rubin N, McAfee S, Sackstein R, Saidman S, Colby C, Sykes M, Sachs DH, Cosimi AB (1999) Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 68:480–484PubMedGoogle Scholar
  71. 71.
    Buhler LH, Spitzer TR, Sykes M et al (2002) Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation 74:1405–1409PubMedGoogle Scholar
  72. 72.
    Ildstad ST, Wren SM, Bluestone JA, Barbieri SA, Sachs DH (1985) Characterization of mixed allogeneic chimeras. Immunocompetence, in vitro reactivity, and genetic specificity of tolerance. J Exp Med 162:231–244PubMedGoogle Scholar
  73. 73.
    Metzler B, Gfeller P, Bigaud M, Li J, Wieczorek G, Heusser C, Lake P, Katopodis A (2004) Combinations of anti-LFA-1, everolimus, anti-CD40 ligand, and allogeneic bone marrow induce central transplantation tolerance through hemopoietic chimerism, including protection from chronic heart allograft rejection. J Immunol 173:7025–7036PubMedGoogle Scholar
  74. 74.
    Luo B, Chan WF, Shapiro AM, Anderson CC (2007) Non-myeloablative mixed chimerism approaches and tolerance, a split decision. Eur J Immunol 37:1233–1242PubMedGoogle Scholar
  75. 75.
    Boyse EA, Carswell EA, Scheid MP, Old LJ (1973) Tolerance of Sk-incompatible skin grafts. Nature 244:441–442PubMedGoogle Scholar
  76. 76.
    Boyse EA, Lance EM, Carswell EA, Cooper S, Old LJ (1970) Rejection of skin allografts by radiation chimaeras: selective gene action in the specification of cell surface structure. Nature 227:901–903PubMedGoogle Scholar
  77. 77.
    Boyse EA, Old LJ (1968) Loss of skin allograft tolerance by chimeras. Transplantation 6:619PubMedGoogle Scholar
  78. 78.
    Silverman MS, Chin PH (1962) Differences in the rejection of skin transplants and blood cells of donor marrow origin by radiation-induced chimeras. Ann N Y Acad Sci 99:542–549PubMedGoogle Scholar
  79. 79.
    Lance EM, Boyse EA, Cooper S, Carswell EA (1971) Rejection of skin allografts by irradiation chimeras: evidence for skin-specific transplantation barrier. Transplant Proc 3:864–868PubMedGoogle Scholar
  80. 80.
    Steinmuller D, Lofgreen JS (1974) Differential survival of skin and heart allografts in radiation chimaeras provides further evidence for Sk histocompatibility antigen. Nature 248:796–797PubMedGoogle Scholar
  81. 81.
    Koretz SH, Gottlieb MS, Strober S, Pennock J, Bieber CP, Hoppe RT, Reitz BA, Kaplan HS (1981) Organ transplantation in mongrel dogs using total lymphoid irradiation (TLI). Transplant Proc 13:443–445PubMedGoogle Scholar
  82. 82.
    Sykes M, Szot GL, Swenson KA, Pearson DA (1997) Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nat Med 3:783–787PubMedGoogle Scholar
  83. 83.
    Tomita Y, Yoshikawa M, Zhang QW, Shimizu I, Okano S, Iwai T, Yasui H, Nomoto K (2000) Induction of permanent mixed chimerism and skin allograft tolerance across fully MHC-mismatched barriers by the additional myelosuppressive treatments in mice primed with allogeneic spleen cells followed by cyclophosphamide. J Immunol 165:34–41PubMedGoogle Scholar
  84. 84.
    Li H, Inverardi L, Molano RD, Pileggi A, Ricordi C (2003) Nonlethal conditioning for the induction of allogeneic chimerism and tolerance to islet allografts. Transplantation 75:966–970PubMedGoogle Scholar
  85. 85.
    Cowan CA, Klimanskaya I, McMahon J et al (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356PubMedGoogle Scholar
  86. 86.
    Stojkovic M, Lako M, Strachan T, Murdoch A (2004) Derivation, growth and applications of human embryonic stem cells. Reproduction 128:259–267PubMedGoogle Scholar
  87. 87.
    Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278PubMedGoogle Scholar
  88. 88.
    Kaufman DS, Hanson ET, Lewis RL, Auerbach R, Thomson JA (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 98:10716–10721PubMedGoogle Scholar
  89. 89.
    Qiu C, Hanson E, Olivier E, Inada M, Kaufman DS, Gupta S, Bouhassira EE (2005) Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp Hematol 33:1450–1458PubMedGoogle Scholar
  90. 90.
    Tian X, Morris JK, Linehan JL, Kaufman DS (2004) Cytokine requirements differ for stroma and embryoid body-mediated hematopoiesis from human embryonic stem cells. Exp Hematol 32:1000–1009PubMedGoogle Scholar
  91. 91.
    Ledran MH, Krassowska A, Armstrong L et al (2008) Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 3:85–98PubMedGoogle Scholar
  92. 92.
    Woll PS, Morris JK, Painschab MS, Marcus RK, Kohn AD, Biechele TL, Moon RT, Kaufman DS (2008) Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood 111:122–131PubMedGoogle Scholar
  93. 93.
    Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P, Martin T, Rouleau A, Bhatia M (2004) Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 21:31–41PubMedGoogle Scholar
  94. 94.
    Kennedy M, D’Souza SL, Lynch-Kattman M, Schwantz S, Keller G (2007) Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood 109:2679–2687PubMedGoogle Scholar
  95. 95.
    Vodyanik MA, Thomson JA, Slukvin II (2006) Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood 108:2095–2105PubMedGoogle Scholar
  96. 96.
    Karlsson KR, Cowley S, Martinez FO, Shaw M, Minger SL, James W (2008) Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3. Exp Hematol 36:1167–1175PubMedGoogle Scholar
  97. 97.
    Zambidis ET, Park TS, Yu W, Tam A, Levine M, Yuan X, Pryzhkova M, Peault B (2008) Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood 112:3601–3614PubMedGoogle Scholar
  98. 98.
    Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106:1601–1603PubMedGoogle Scholar
  99. 99.
    Ma F, Ebihara Y, Umeda K et al (2008) Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc Natl Acad Sci U S A 105:13087–13092PubMedGoogle Scholar
  100. 100.
    Lu SJ, Feng Q, Park JS, Vida L, Lee BS, Strausbauch M, Wettstein PJ, Honig GR, Lanza R (2008) Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood 112:4475–4484PubMedGoogle Scholar
  101. 101.
    Vodyanik MA, Bork JA, Thomson JA, Slukvin II (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105:617–626PubMedGoogle Scholar
  102. 102.
    Timmermans F, Velghe I, Vanwalleghem L et al (2009) Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J Immunol 182:6879–6888PubMedGoogle Scholar
  103. 103.
    Galic Z, Kitchen SG, Kacena A, Subramanian A, Burke B, Cortado R, Zack JA (2006) T lineage differentiation from human embryonic stem cells. Proc Natl Acad Sci U S A 103:11742–11747PubMedGoogle Scholar
  104. 104.
    Galic Z, Kitchen SG, Subramanian A, Bristol G, Marsden MD, Balamurugan A, Kacena A, Yang O, Zack JA (2009) Generation of T lineage cells from human embryonic stem cells in a feeder free system. Stem Cells 27:100–107PubMedGoogle Scholar
  105. 105.
    Martin CH, Woll PS, Ni Z, Zuniga-Pflucker JC, Kaufman DS (2008) Differences in lymphocyte developmental potential between human embryonic stem cell and umbilical cord blood-derived hematopoietic progenitor cells. Blood 112:2730–2737PubMedGoogle Scholar
  106. 106.
    Gaur M, Kamata T, Wang S, Moran B, Shattil SJ, Leavitt AD (2006) Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J Thromb Haemost 4:436–442PubMedGoogle Scholar
  107. 107.
    Takayama N, Nishikii H, Usui J, Tsukui H, Sawaguchi A, Hiroyama T, Eto K, Nakauchi H (2008) Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood 111:5298–5306PubMedGoogle Scholar
  108. 108.
    Tian X, Woll PS, Morris JK, Linehan JL, Kaufman DS (2006) Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells 24:1370–1380PubMedGoogle Scholar
  109. 109.
    Woll PS, Martin CH, Miller JS, Kaufman DS (2005) Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J Immunol 175:5095–5103PubMedGoogle Scholar
  110. 110.
    Slukvin II, Vodyanik MA, Thomson JA, Gumenyuk ME, Choi KD (2006) Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. J Immunol 176:2924–2932PubMedGoogle Scholar
  111. 111.
    Narayan AD, Chase JL, Lewis RL, Tian X, Kaufman DS, Thomson JA, Zanjani ED (2006) Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood 107:2180–2183PubMedGoogle Scholar
  112. 112.
    Amit M, Margulets V, Segev H, Shariki K, Laevsky I, Coleman R, Itskovitz-Eldor J (2003) Human feeder layers for human embryonic stem cells. Biol Reprod 68:2150–2156PubMedGoogle Scholar
  113. 113.
    van Hoof D, Braam SR, Dormeyer W, Ward-van Oostwaard D, Heck AJ, Krijgsveld J, Mummery CL (2008) Feeder-free monolayer cultures of human embryonic stem cells express an epithelial plasma membrane protein profile. Stem Cells 26:2777–2781PubMedGoogle Scholar
  114. 114.
    Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, Bhatia M (2003) Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102:906–915PubMedGoogle Scholar
  115. 115.
    Cerdan C, Rouleau A, Bhatia M (2004) VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood 103:2504–2512PubMedGoogle Scholar
  116. 116.
    Zhan X, Dravid G, Ye Z, Hammond H, Shamblott M, Gearhart J, Cheng L (2004) Functional antigen-presenting leucocytes derived from human embryonic stem cells in vitro. Lancet 364:163–171PubMedGoogle Scholar
  117. 117.
    Zambidis ET, Peault B, Park TS, Bunz F, Civin CI (2005) Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood 106:860–870PubMedGoogle Scholar
  118. 118.
    Wang L, Menendez P, Shojaei F, Li L, Mazurier F, Dick JE, Cerdan C, Levac K, Bhatia M (2005) Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 201:1603–1614PubMedGoogle Scholar
  119. 119.
    Cameron CM, Hu WS, Kaufman DS (2006) Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng 94:938–948PubMedGoogle Scholar
  120. 120.
    Bowles KM, Vallier L, Smith JR, Alexander MR, Pedersen RA (2006) HOXB4 overexpression promotes hematopoietic development by human embryonic stem cells. Stem Cells 24:1359–1369PubMedGoogle Scholar
  121. 121.
    Vijayaragavan K, Szabo E, Bosse M, Ramos-Mejia V, Moon RT, Bhatia M (2009) Noncanonical Wnt signaling orchestrates early developmental events toward hematopoietic cell fate from human embryonic stem cells. Cell Stem Cell 4:248–262PubMedGoogle Scholar
  122. 122.
    Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW (2008) Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells 26:2300–2310PubMedGoogle Scholar
  123. 123.
    Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732PubMedGoogle Scholar
  124. 124.
    Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810PubMedGoogle Scholar
  125. 125.
    Fabricius D, Bonde S, Zavazava N (2005) Induction of stable mixed chimerism by embryonic stem cells requires functional Fas/FasL engagement. Transplantation 79:1040–1044PubMedGoogle Scholar
  126. 126.
    Ji J, Vijayaragavan K, Bosse M, Menendez P, Weisel K, Bhatia M (2008) OP9 stroma augments survival of hematopoietic precursors and progenitors during hematopoietic differentiation from human embryonic stem cells. Stem Cells 26:2485–2495PubMedGoogle Scholar
  127. 127.
    Matsumoto K, Isagawa T, Nishimura T, Ogaeri T, Eto K, Miyazaki S, Miyazaki J, Aburatani H, Nakauchi H, Ema H (2009) Stepwise development of hematopoietic stem cells from embryonic stem cells. PLoS ONE 4:e4820PubMedGoogle Scholar
  128. 128.
    Moore MA, Shieh JH, Lee G (2006) Hematopoietic cells. Methods Enzymol 418:208–242PubMedGoogle Scholar
  129. 129.
    Burt RK, Verda L, Kim DA, Oyama Y, Luo K, Link C (2004) Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J Exp Med 199:895–904PubMedGoogle Scholar
  130. 130.
    Unger C, Karner E, Treschow A et al (2008) Lentiviral-mediated HoxB4 expression in human embryonic stem cells initiates early hematopoiesis in a dose-dependent manner but does not promote myeloid differentiation. Stem Cells 26:2455–2466PubMedGoogle Scholar
  131. 131.
    Zhang XB, Beard BC, Trobridge GD, Wood BL, Sale GE, Sud R, Humphries RK, Kiem HP (2008) High incidence of leukemia in large animals after stem cell gene therapy with a HOXB4-expressing retroviral vector. J Clin Invest 118:1502–1510PubMedGoogle Scholar
  132. 132.
    Park TS, Zambidis ET, Lucitti JL, Logar A, Keller BB, Peault B (2009) Human embryonic stem cell-derived hematoendothelial progenitors engraft chicken embryos. Exp Hematol 37:31–41PubMedGoogle Scholar
  133. 133.
    Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:631–644PubMedGoogle Scholar
  134. 134.
    Blank U, Karlsson G, Karlsson S (2008) Signaling pathways governing stem-cell fate. Blood 111:492–503PubMedGoogle Scholar
  135. 135.
    Tian X, Hexum MK, Penchev VR, Taylor RJ, Shultz LD, Kaufman DS (2009) Bioluminescent imaging demonstrates that transplanted human embryonic stem cell-derived CD34(+) cells preferentially develop into endothelial cells. Stem Cells 27:2675–2685PubMedGoogle Scholar
  136. 136.
    Lu SJ, Feng Q, Caballero S, Chen Y, Moore MA, Grant MB, Lanza R (2007) Generation of functional hemangioblasts from human embryonic stem cells. Nat Methods 4:501–509PubMedGoogle Scholar
  137. 137.
    Swijnenburg RJ, Schrepfer S, Govaert JA et al (2008) Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc Natl Acad Sci U S A 105:12991–12996PubMedGoogle Scholar
  138. 138.
    Kaufman DS, Thomson JA (2002) Human ES cells–haematopoiesis and transplantation strategies. J Anat 200:243–248PubMedGoogle Scholar
  139. 139.
    Bradley JA, Bolton EM, Pedersen RA (2002) Stem cell medicine encounters the immune system. Nat Rev Immunol 2:859–871PubMedGoogle Scholar
  140. 140.
    Tillson M, Niemeyer GP, Welch JA, Brawner W, Swaim SF, Rynders P, Lenz SD, Dean B, Lothrop CD Jr (2006) Hematopoietic chimerism induces renal and skin allograft tolerance in DLA-identical dogs. Exp Hematol 34:1759–1770PubMedGoogle Scholar
  141. 141.
    Horner BM, Randolph MA, Duran-Struuck R, Hirsh EL, Ferguson KK, Teague AG, Butler PE, Huang CA (2009) Induction of tolerance to an allogeneic skin flap transplant in a preclinical large animal model. Transplant Proc 41:539–541PubMedGoogle Scholar
  142. 142.
    Millan MT, Shizuru JA, Hoffmann P, Dejbakhsh-Jones S, Scandling JD, Grumet FC, Tan JC, Salvatierra O, Hoppe RT, Strober S (2002) Mixed chimerism and immunosuppressive drug withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation. Transplantation 73:1386–1391PubMedGoogle Scholar
  143. 143.
    Strober S, Lowsky RJ, Shizuru JA, Scandling JD, Millan MT (2004) Approaches to transplantation tolerance in humans. Transplantation 77:932–936PubMedGoogle Scholar
  144. 144.
    Trivedi HL, Vanikar AV, Modi PR, Shah VR, Vakil JM, Trivedi VB, Khemchandani SI (2005) Allogeneic hematopoietic stem-cell transplantation, mixed chimerism, and tolerance in living related donor renal allograft recipients. Transplant Proc 37:737–742PubMedGoogle Scholar
  145. 145.
    Trivedi HL, Vanikar AV, Vakil JM, Shah VR, Modi PR, Trivedi VB (2004) A strategy to achieve donor-specific hyporesponsiveness in cadaver renal allograft recipients by donor haematopoietic stem cell transplantation into the thymus and periphery. Nephrol Dial Transplant 19:2374–2377PubMedGoogle Scholar
  146. 146.
    Donckier V, Troisi R, Le Moine A et al (2006) Early immunosuppression withdrawal after living donor liver transplantation and donor stem cell infusion. Liver Transpl 12:1523–1528PubMedGoogle Scholar
  147. 147.
    Donckier V, Troisi R, Toungouz M et al (2004) Donor stem cell infusion after non-myeloablative conditioning for tolerance induction to HLA mismatched adult living-donor liver graft. Transpl Immunol 13:139–146PubMedGoogle Scholar
  148. 148.
    Gori JL, Tian X, Swanson D, Gunther R, Shultz LD, McIvor RS, Kaufman DS (2010) In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase. Gene Ther 17:238-249Google Scholar
  149. 149.
    Wang Y, Yates F, Naveiras O, Ernst P, Daley GQ (2005) Embryonic stem cell-derived hematopoietic stem cells. Proc Natl Acad Sci U S A 102:19081–19086PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Francesca Milanetti
    • 1
    • 2
  • You-Hong Cheng
    • 1
  • Richard K. Burt
    • 1
  1. 1.Division of Immunotherapy, Department of MedicineNorthwestern University, Feinberg School of MedicineChicagoUSA
  2. 2.Division of Clinical Immunology and RheumatologyS. Andrea University Hospital, Sapienza University of RomeRomeItaly

Personalised recommendations