Skip to main content

Modeling Influenza Vaccination Behavior via Inductive Reasoning Games

  • Chapter
  • First Online:

Abstract

Past experiences with seasonal influenza and immunization may affect individual decisions about whether to obtain vaccinations. Individuals continually adapt to recent influenza-related experiences, using inductive thought to reevaluate their options to obtain vaccinations. We explore this concept by constructing an individual-level model of adaptive decision-making. We couple this model with a population-level model of influenza that includes vaccination dynamics. The coupled models allow us to explore how individual-level decisions may change influenza epidemiology and, conversely, how influenza epidemiology might change individual-level decisions. By including the effects of adaptive decision-making within an epidemic model, we show that the behavioral dynamics of vaccination uptake could lead to severe influenza epidemics even without the presence of a pandemic strain. We further show that these severe epidemics might be prevented if vaccination programs provided commitment-based incentives or if mass media released epidemiological information that individuals can use to evaluate the prudence of vaccination. Finally we discuss and present some preliminary results of the model when social networks offer preferential paths for transmission.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For s = 1, the pro-vaccination experience of an individual simply represents the total number of the years that he/she would have benefited from vaccinating.

  2. 2.

    If no epidemic occurred, we assume that an individual who chose to get vaccinated is not attending to the fact that mass vaccination could have prevented the epidemic. He/she is purely self-interested and believes that in the next flu season he/she can choose not to vaccinate and free-ride on the protection provided by those that do get vaccinated. This assumption is relaxed in Sect. 5.

  3. 3.

    We used an R 0 value of 2. 5 and obtained q(p) by integrating a deterministic SIR model with daily transmissibility rate of 5 ∕ 6 and an average infectious duration with flu of 3 days. Similar results can be obtained for the case where q(p) is a linear function with q(0) = 0. 8 that monotonically decreases to q(p) = 0 for p ≥ π c .

  4. 4.

    When simulating the basic model, the achieved vaccination coverage p n in year n represents only one realization as given by Eq. (3). However, using the same set of vaccination probabilities w n (i), the Bernoulli process describing the vaccination decisions could have resulted in a different set of vaccination decisions and thus in a different vaccination coverage realization.

  5. 5.

    Here, \(\Pi _{0} =\{ s + 1/{[(1 - s)q(0)]\}}^{-1}\) and is found by setting \(\pi _{n} = s\pi _{c}\) and \(\pi _{n+1} = \pi _{c}\) in the iterative map Eq. (14).

  6. 6.

    Here, incidence is defined as the number of new cases per susceptible (i.e., non-vaccinated) individual. Since we assume a perfect vaccine, the incidence is equivalent to the risk of infection q n ) that a vaccinated individual would have had if he/she had not been vaccinated at the beginning of the season.

  7. 7.

    Here, R 0 is given by \(\langle k\rangle T\). For the Erdös–Rènyi graph, the epidemic threshold condition is still expressed in terms of R 0, although this is not the case for a general network [19]. Therefore, Eq. (1) relating π c to R 0 is still valid. It is however important to note that π c gives the critical vaccination coverage needed if individuals vaccinate irrespective of their location on the network.

  8. 8.

    This seemingly simple construct provides an example of what is known as a complex-adaptive system [30] since the emergence of the vaccination coverage (i.e., a macroscopic quantity) provides different types of feedback to the individuals (i.e., the microscopic agents) depending on both its achieved value and the actions taken by each individual.

References

  1. Fine, P.E.M.: Epidemiol. Rev. 15, 265 (1993)

    Google Scholar 

  2. Groves, T., Ledyard, J.: Econometrica 45, 783 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Funk, S., Salathé, M., Jansen, V.A.A.: J. R. Soc. Interface 7, 1247 (2010)

    Article  Google Scholar 

  4. Geoffard, P.Y., Philipson, T.: Am. Econ. Rev. 87, 222 (1997)

    Google Scholar 

  5. Bozzette, S.A., Boer, R.,  Bhatnagar, V., Brower, J.L., Keeler, E.B., Morton, S.C., Stoto, M.A.: N. Engl. J. Med. 348, 416 (2003)

    Article  Google Scholar 

  6. Valle, S.D., Hethcote, H., Hyman, J.M., Castillo-Chavez, C.: Math. Biosci. 195, 228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauch, C.T., Earn, D.J.: Proc. Natl. Acad. Sci. USA 101, 13391 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bauch, C.T., Galvani, A.P., Earn, D.J.: Proc. Natl. Acad. Sci. USA 100, 10564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Manfredi, P., Posta, P.D., d’Onofrio, A., Salinelli, E., Centrone, F., Meo, C. Poletti, P.: Vaccine 28, 98 (2009)

    Google Scholar 

  10. Reluga, T.C., Bauch, C.T., Galvani, A.P.: Math. Biosci. 204, 185 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bauch, C.T.: Proc. Biol. Sci. 272, 1669 (2005)

    Article  Google Scholar 

  12. d’Onofrio, A., Manfredi, P., Salinelli, E.: Theor. Popul. Biol. 71, 301 (2007)

    Google Scholar 

  13. Buonomo, B., D’Onofrio, A., Lacitignola, D.: Math. Biosci. 216, 9 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Arthur, W.B.: Amer. Econ. Review 84, 406 (1994)

    Google Scholar 

  15. Challet, D., Marsili, M., Zhang, Y.-C.: Minority games: Oxford finance. Oxford University Press, Oxford, New York (2005): Book Oxford finance. ill.; 25 cm. Includes bibliographical references (p. [335]-342) and index. English

    Google Scholar 

  16. Vardavas, R., Breban, R., Blower, S.: PLoS Comput. Biol. 3, e85 (2007)

    Article  Google Scholar 

  17. Breban, R., Vardavas, R., Blower, S.: Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 76, 031127 (2007)

    Google Scholar 

  18. Breban, R.: PLoS One 6, e28300 (2011)

    Article  Google Scholar 

  19. Barrat, A., Barthelemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  20.  Perisic, A., Bauch, C.T.: PLoS Comput. Biol. 5, e1000280 (2009)

    Article  Google Scholar 

  21. Perisic, A., Bauch, C.T.: BMC Infect. Dis. 9, 77 (2009)

    Article  Google Scholar 

  22. Salathé, M., Jones, J.H.: PLoS Comput. Biol. 6, e1000736 (2010)

    Article  Google Scholar 

  23. Fu, F., Rosenbloom, D.I., Wang, L., Nowak, M.A.: Proc. Biol. Sci. 278, 42 (2011)

    Article  Google Scholar 

  24. Cornforth, D.M., Reluga, T.C., Shim, E., Bauch, C.T., Galvani, A.P., Meyers, L.A.: PLoS Comput. Biol. 7, e1001062 (2011)

    Article  MathSciNet  Google Scholar 

  25. Mills, C.E., Robins, J.M., Lipsitch, M.: Nature 432, 904 (2004): 1476-4687 (Electronic) Historical Article Journal Article

    Google Scholar 

  26. Erdös, P., Rényi, A.: Publicationes Mathematicae 6, 290 (1959)

    MATH  Google Scholar 

  27. Newman, M.E.J.: Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 66, 016128 (2002)

    Google Scholar 

  28. Molinari, N.-A.M., Ortega-Sanchez, I.R., Messonnier, M.L., Thompson, W.W., Wortley, P.M., Weintraub, E., Bridges, C.B.: Vaccine 25, 5086 (2007)

    Article  Google Scholar 

  29. Fiore, A.E., Shay, D.K., Broder, K., Iskander, J.K., Uyeki, T.M., Mootrey, G., Bresee, J.S., Cox, N.J.: C. for Disease Control, Prevention: MMWR Recomm. Rep. 58, 1 (2009)

    Google Scholar 

  30. Miller, J., Page, S.: Complex Adaptive Systems: An Introduction to Computational Models of Social Life. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  31. Szucs, T.D., Muller, D.: Vaccine 23, 5055 (2005) 0264-410X (Print) Journal Article

    Google Scholar 

  32. Vardavas, R., Breban, R., Blower, S.: BMC Res. Notes 3, 92 (2010)

    Article  Google Scholar 

  33. Chen, G.L., Subbarao, K.: Nat. Med. 15, 1251 (2009)

    Article  Google Scholar 

  34. Du, L., Zhou, Y., Jiang, S.: Microbes Infect. 12, 280 (2010)

    Article  Google Scholar 

  35. Maurer, J., Harris, K.M., Parker, A., Lurie, N.: Vaccine 27, 5732 (2009)

    Article  Google Scholar 

  36. Ernsting, A., Lippke, S., Schwarzer, R., Schneider, M.: Adv. Prev. Med. 2011, 148934 (2011)

    Google Scholar 

  37. Gidengil, C.A., Parker, A.M., Zikmund-Fisher, B.J.: Am. J. Public Health 102, 672 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. Romulus Breban, Sarah Nowak, Kayla de la Haye, Courtney Gidengil, Andrew Parker, and Sydne Jennifer Newberry for discussions in the preparation of this chapter. We also gratefully acknowledge the financial support from US National Institute of Health/NCI (5R21CA157571-02). Contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of Health/NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Vardavas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vardavas, R., Marcum, C.S. (2013). Modeling Influenza Vaccination Behavior via Inductive Reasoning Games. In: Manfredi, P., D'Onofrio, A. (eds) Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5474-8_13

Download citation

Publish with us

Policies and ethics