Skip to main content

Neurocognitive Mechanisms of Error-Based Motor Learning

  • Conference paper
  • First Online:
Book cover Progress in Motor Control

Part of the book series: Advances in Experimental Medicine and Biology ((volume 782))

Abstract

One mechanism for acquiring new motor skills is minimization of errors from one practice trial to the next. A substantial body of literature supports a role for cerebellar pathways in such adaptive motor error minimization processes. A region in the medial prefrontal cortex, including the anterior cingulate cortex, has been linked to performance monitoring and error detection processes for cognitive tasks. Recent findings support the notion that this region is also sensitive to the commission of motor errors. Furthermore, the basal ganglia nuclei also exhibit neural activity which varies with both errors and rewards. Here, we review the literature supporting a potential role for each of these networks in error-based motor learning, focusing on both feedback and feedforward control processes. We also speculate about the relative independence versus interactivity of their respective functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostino R, Sanes JN, Hallett M (1996) Motor skill learning in Parkinson’s disease. J Neurol Sci 139(2):218–226

    Article  PubMed  CAS  Google Scholar 

  • Amiez C, Joseph JP, Procyk E (2005) Anterior cingulate error-related activity is modulated by predicted reward. Eur J Neurosci 21(12):3447–3452

    Article  PubMed  Google Scholar 

  • Angel RW, Alston W, Garland H (1971) L-dopa and error correction time in Parkinson’s disease. Neurology 21(12):1255–1260

    Article  PubMed  CAS  Google Scholar 

  • Anguera JA, Seidler RD, Ghering WJ (2009) Changes in performance monitoring during sensorimotor adaptation. J Neurophys 102:1868–1879

    Google Scholar 

  • Anguera JA, Reuter-Lorenz PA, Willingham DT, Seidler RD (2010) Contributions of spatial working memory to visuomotor learning. J Cogn Neurosci 22(9):1917–1930

    Article  PubMed  Google Scholar 

  • Badgaiyan RD, Posner MI (1998) Mapping the cingulate cortex in response selection and monitoring. Neuroimage 7(3):255–260

    Article  PubMed  CAS  Google Scholar 

  • Bayer HM, Glimcher PW (2005) Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47(1):129–141

    Article  PubMed  CAS  Google Scholar 

  • Berns GS, Cohen JD, Mintun MA (1997) Brain regions responsive to novelty in the absence of awareness. Science 276(5316):1272–1275

    Article  PubMed  CAS  Google Scholar 

  • Blakemore S-J, Frith CD, Wolpert DM (2001) The cerebellum is involved in predicting the sensory consequences of action. Neuro Report 12:1879–1884

    CAS  Google Scholar 

  • Bostan AC, Dum RP, Strick PL (2010) The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci 107(18):8452–8456

    Article  PubMed  CAS  Google Scholar 

  • Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20(3):261–270

    Article  PubMed  Google Scholar 

  • Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001) Conflict monitoring and cognitive control. Psychol Rev 108(3):624–652

    Article  PubMed  CAS  Google Scholar 

  • Boulet C, Lemay M, Bédard MA, Chouinard MJ, Chouinard S, Richer F (2005) Early Huntington’s disease affects movements in transformed sensorimotor mappings. Brain Cogn 57(3):236–243

    Article  PubMed  Google Scholar 

  • Brown JW, Braver TS (2005) Learned predictions of error likelihood in the anterior cingulate cortex. Science 307(5712):1118–1121

    Article  PubMed  CAS  Google Scholar 

  • Butters N, Rosvold HE (1968) Effect of caudate and septal nuclei lesions on resistance to extinction and delayed-alternation. J Comp Physiol Psychol 65(3):397–403

    Article  PubMed  CAS  Google Scholar 

  • Canales JJ, Graybiel AM (2000) A measure of striatal function predicts motor stereotypy. Nat Neurosci 3(4):377–383

    Article  PubMed  CAS  Google Scholar 

  • Canavan AG, Passingham RE, Marsden CD, Quinn N, Wyke M, Polkey CE (1990) Prism adaptation and other tasks involving spatial abilities in patients with Parkinson’s disease, patients with frontal lobe lesions and patients with unilateral temporal lobectomies. Neuropsychologia 28(9):969–984

    Article  PubMed  CAS  Google Scholar 

  • Chao HH, Luo X, Chang JL, Li CS (2009) Activation of the pre-supplementary motor area but not inferior prefrontal cortex in association with short stop signal reaction time—an intra-subject analysis. BMC Neurosci 10:75

    Google Scholar 

  • Chen LL, Wise SP (1996) Evolution of directional preferences in the supplementary eye field during acquisition of conditional oculomotor associations. J Neurosci 16(9):3067–3081

    PubMed  CAS  Google Scholar 

  • Chen X, Scangos KW, Stuphorn V (2010) Supplementary motor area exerts proactive and reactive control of arm movements. J Neurosci 30(44):14657–14675

    Article  PubMed  CAS  Google Scholar 

  • Chevrier A, Schachar RJ (2010) Error detection in the stop signal task. Neuroimage 53(2):664–673

    Article  PubMed  Google Scholar 

  • Clower DM, Hoffman JM, Votaw JR, Faber TL, Woods RP, Alexander GE (1996) Role of posterior parietal cortex in the recalibration of visually guided reaching. Nature 383(6601):618–621

    Article  PubMed  CAS  Google Scholar 

  • Cools AR (1985) Morphine and specific changes in the sensitivity of noradrenergic receptors within the ‘limbic’ part of the feline caudate nucleus: a behaviour study. Brain Res Bull 14(3):239–250

    Article  PubMed  CAS  Google Scholar 

  • Cordo PJ, Flanders M (1990) Time-dependent effects of kinesthetic input. J Mot Behav 22(1):45–65

    PubMed  CAS  Google Scholar 

  • Criscimanga-Hemminger SE, Bastian AJ, Shadmehr R (2010) Size of error affects cerebellar contributions to motor learning. J Neurophysiol 103:2275–2284

    Article  Google Scholar 

  • Cunnington R, Windischberger C, Deecke L, Moser E (2002) The preparation and execution of self-initiated and externally triggered movement: a study of event-related fMRI. Neuroimage 15(2):373–385

    Article  PubMed  CAS  Google Scholar 

  • Danckert J, Ferber S, Goodale MA (2008) Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. Eur J Neurosci 28(8):1696–1704

    Article  PubMed  Google Scholar 

  • D’Ardenne K, McClure SM, Nystrom LE, Cohen JD (2008) BOLD responses reflecting dopaminergic signals in the human ventral segmental area. Science 319(5867):1264–1267

    Article  PubMed  CAS  Google Scholar 

  • Daw ND, Doya K (2006) The computational neurobiology of learning and reward. Curr Opin Neurobiol 16(2):199–204

    Article  PubMed  CAS  Google Scholar 

  • Dayan P, Balleine BW (2002) Reward, motivation, and reinforcement learning. Neuron 36(2):285–298

    Article  PubMed  CAS  Google Scholar 

  • Dehaene S, Posner MI, Tucker DM (1994) Localization of a neural system for error-detection and compensation. Psychol Sci 5(5):303–305

    Article  Google Scholar 

  • Diedrichsen J, White O, Newman D, Lally N (2010) Use-dependent and error-based learning of motor behaviors. J Neurosci 30(15):5159–5166

    Article  PubMed  CAS  Google Scholar 

  • Delgado A, Sierra A, Querejeta E, Valdiosera RF, Aceves J (2000) Inhibitory control of the GABAergic transmission in the rat neostriatum by D2 dopamine receptors. Neuroscience 95(4):1043–1048

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR (1983) The neurophysiologic basis of abnormal movements in basal ganglia disorders. Neurobehav Toxicol Teratol 5(6):611–616

    PubMed  CAS  Google Scholar 

  • den Ouden HE, Daunizeau J, Roiser J, Friston KJ, Stephan KE (2010) Striatal prediction error modulates cortical coupling. J Neurosci 30:3210–3219

    Google Scholar 

  • Desmurget M, Grafton S (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431

    Article  PubMed  Google Scholar 

  • Desmurget M, Vindras P, Grea H, Viviani P, Grafton ST (2000) Proprioception does not quickly drift during visual occlusion. Exp Brain Res 134(3):363–377

    Article  PubMed  CAS  Google Scholar 

  • Dhar M, Pourtois G (2011) Early error detection is generic, but subsequent adaption to errors is not: evidence from ERPs. Neuropsychologia 49(5):512–517

    Google Scholar 

  • Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R (2005) Neural correlates of reach errors. J Neurosci 25:9919–9931

    Article  PubMed  CAS  Google Scholar 

  • Domingo A, Ferris DP (2009) Effects of physical guidance on short-term learning of walking on a narrow beam. Gait Posture 30(4):464–468

    Article  PubMed  Google Scholar 

  • Domingo A, Ferris DP (2010) The effects of error augmentation on learning to walk on a narrow balance beam. Exp Brain Res 206(4):359–370

    Article  PubMed  Google Scholar 

  • Donchin O, Francis JT, Shadmehr R (2003) Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control. J Neurosci 23(27):9032–9045

    PubMed  CAS  Google Scholar 

  • Doya K (2000) Complementary roles of basal ganglia and cerebellum in learning and motor control. Curr Opin Neurobiol 10:732–739

    Article  PubMed  CAS  Google Scholar 

  • Doyon J, Gaudreau D, Laforce Jr R, Castonguay M, Bedard PJ, Bedard F, Bouchard J-P (1997) Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain Cogn 34:218–245

    Article  PubMed  CAS  Google Scholar 

  • Doyon J, Penhune V, Ungerleider LG (2003) Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41:252–262

    Article  PubMed  Google Scholar 

  • Duann JR, Ide JS, Luo X, Li CS (2009) Functional connectivity delineates distinct roles of the inferior frontal cortex and presupplementary motor area in stop signal inhibition. J Neurosci 29(32):10171–10179

    Article  PubMed  CAS  Google Scholar 

  • Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15(9):5999–6013

    PubMed  CAS  Google Scholar 

  • Eimer M, Goschke T, Schlaghecken F, Sturmer B (1996) Explicit and implicit learning of event sequences: evidence from event-related brain potentials. J Exp Psychol Learn Mem Cogn 22(4):970–987

    Article  PubMed  CAS  Google Scholar 

  • Emken JL, Reinkensmeyer DJ (2005) Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans Neural Syst Rehabil Eng 13:33–39

    Article  PubMed  Google Scholar 

  • Falkenstein M, Hohnsbein J, Hoormann J (1995) Event-related potential correlates of errors in reaction tasks. Electroencephalogr Clin Neurophysiol Suppl 44:287–296

    PubMed  CAS  Google Scholar 

  • Ferdinand NK, Mecklinger A, Kray J (2008) Error and deviance processing in implicit and explicit sequence learning. J Cogn Neurosci 20(4):629–642

    Article  PubMed  Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299(5614):1898–1902

    Article  PubMed  CAS  Google Scholar 

  • Flament D, Ellermann JM, Kim SG, Ugurbil K, Ebner TJ (1996) Functional magnetic resonance imaging of cerebellar activation during the learning of a visuomotor dissociation task. Hum Brain Mapp 4(3):210–226

    Article  PubMed  CAS  Google Scholar 

  • Flanagan JR, Vetter P, Johansson RS, Wolpert DM (2003) Prediction precedes control in motor learning. Curr Biology 13(2):146–150

    Google Scholar 

  • Folstein JR, Van Petten C (2008) Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology 45(1):152–170

    PubMed  Google Scholar 

  • Frank MJ (2011) Computational models of motivated action selection in corticostriatal circuits. Curr Opin Neurobiol 21(3):381–386

    Article  PubMed  CAS  Google Scholar 

  • Gabrieli JD, Stebbins GT, Singh J, Willingham DB, Goetz CG (1997) Intact mirror-tracing and impaired rotary-pursuit skill learning in patients with Huntington’s disease: evidence for dissociable memory systems in skill learning. Neuropsychology 11(2):272–281

    Article  PubMed  CAS  Google Scholar 

  • Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E (1993) A Neural System for Error-Detection and Compensation. Psychol Sci 4(6):385–390

    Article  Google Scholar 

  • Gehring WJ, Coles MG, Meyer DE, Donchin E (1995) A brain potential manifestation of error-related processing. Electroencephalogr Clin Neurophysiol Suppl 44:261–272

    PubMed  CAS  Google Scholar 

  • Gehring WJ, Himle J, Nisenson LG (2000) Action-monitoring dysfunction in obsessive-compulsive disorder. Psychol Sci 11(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Gehring WJ, Liu Y, Orr JM, Carp J (2011) The error-related negativity (ERN/Ne) In: Luck SJ, Kappenman E (eds) Oxford handbook of event-related potential components. Oxford University Press, New York

    Google Scholar 

  • Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci USA 86(22):9015–9019

    Article  PubMed  CAS  Google Scholar 

  • Grafton ST, Schmitt P, Van Horn J, Diedrichsen J (2008) Neural substrates of visuomotor learning based on improved feedback control and prediction. NeuroImage 39:1383–1395

    Article  PubMed  Google Scholar 

  • Guigon E, Dorizzi B, Burnod Y, Schultz W (1995) Neural correlates of learning in the prefrontal cortex of the monkey: a predictive model. Cereb Cortex 5(2):135–147

    Article  PubMed  CAS  Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  • Hikosaka O, Sakai K, Miyauchi S, Takino R, Sasaki Y, Putz B (1996) Activation of human presupplementary motor area in learning of sequential procedures: a functional MRI study. J Neurophysiol 76(1):617–621

    PubMed  CAS  Google Scholar 

  • Hochman EY, Eviatar Z, Breznitz Z, Nevat M, Shaul S (2009) Source localization of error negativity: additional source for corrected errors. Neuroreport 20(13):1144–1148

    Article  PubMed  Google Scholar 

  • Holmes G (1939) The cerebellum of man. Brain 62:1–30

    Article  Google Scholar 

  • Holroyd CB, Coles MG (2002) The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109(4):679–709

    Article  PubMed  Google Scholar 

  • Horvitz JC (2002) Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res 137(1–2):65–74

    Article  PubMed  CAS  Google Scholar 

  • Houk JC (2005) Agents of the mind. Biol Cybern 92(6):427–437

    Article  PubMed  Google Scholar 

  • Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ et al (2007) Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci 362(1485):1573–1583

    Article  PubMed  CAS  Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Pütz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Kawashima R, Satoh K, Kinomura S, Goto R, Sugiura M et al (1997) Activity in the parietal area during visuomotor learning with optical rotation. Neuroreport 8(18):3979–3983

    Article  PubMed  CAS  Google Scholar 

  • Isoda M, Hikosaka O (2007) Switching from automatic to controlled action by monkey medial frontal cortex. Nat Neurosci 10(2):240–248

    Article  PubMed  CAS  Google Scholar 

  • Ito M (2002) Historical review of the significance of the cerebellum and the role of purkinje cells in motor learning. Ann N Y Acad Sci 978:273–288

    Article  PubMed  Google Scholar 

  • Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci 9:304–313

    Article  PubMed  CAS  Google Scholar 

  • Ito M, Doya K (2011) Multiple representations and algorithms for reinforcement learning in the cortico-basal ganglia circuit. Curr Opin Neurobiol, 21(3):368–373

    Article  CAS  Google Scholar 

  • Izawa J, Shadmehr R (2011) Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput Biol 7(3):e1002012

    Google Scholar 

  • Jueptner M, Frith CD, Brooks DJ, Frackowiak RSJ, Passingham RE (1997) Anatomy of motor learning. II. Subcortical structures and learning by trial and error. J Neurophysiol 77:1325–1337

    PubMed  CAS  Google Scholar 

  • Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on feedback-error learning. Biol Cybern 68:95–103

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa S, Kimura T, Yin P-B (1998) Cerebellar complex spikes encode both destinations and errors in arm movements. Nature 392:494–497

    Article  PubMed  CAS  Google Scholar 

  • Knutson B, Cooper JC (2005) Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol 18(4):411–417

    Article  PubMed  Google Scholar 

  • Krakauer JW, Ghilardi MF, Mentis M, Barnes A, Veytsman M, Eidelberg D et al (2004) Differential cortical and subcortical activations in learning rotations and gains for reaching: a PET study. J Neurophysiol 91(2):924–933

    Article  PubMed  Google Scholar 

  • Krigolson OE, Holroyd CB (2006) Evidence for hierarchical error processing in the human brain. Neuroscience 137(1):13–17

    Article  PubMed  CAS  Google Scholar 

  • Krigolson OE, Holroyd CB (2007a) Hierarchical error processing: different errors, different systems. Brain Res 1155:70–80

    Article  CAS  Google Scholar 

  • Krigolson OE, Holroyd CB (2007b) Predictive information and error processing: the role of medial-frontal cortex during motor control. Psychophysiology 44(4):586–595

    Article  Google Scholar 

  • Krigolson OE, Holroyd CB, Van Gyn G, Heath M (2008) Electroencephalographic correlates of target and outcome errors. Exp Brain Res 190(4):401-411

    Article  PubMed  Google Scholar 

  • Kwak Y, Peltier SJ, Muller MLTM, Bohnen N, Dayalu P, Seidler RD (2010) Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front Sys Neurosci 4:143

    Google Scholar 

  • Laforce R, Doyon J (2002) Differential role for the striatum and cerebellum in response to novel movements using a motor learning paradigm. Neuropsychologia 40(5):512–517

    Article  PubMed  Google Scholar 

  • Lang CE, Bastian AJ (2002) Cerbellar damage impairs automaticity of a recently practiced movement. J Neurophysiol 87:1336–1347

    PubMed  Google Scholar 

  • Ljungberg T, Apicella P, Schultz W (1991) Responses of monkey midbrain dopamine neurons during delayed alternation performance. Brain Res 567(2):337–341

    Article  PubMed  CAS  Google Scholar 

  • Logan G (1994) On the ability to inhibit thought and action. In: Dagenbach D, Carr TH (eds) Inhibitory Processes in attention. Memory and language. Academic Press, San Diego

    Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    PubMed  CAS  Google Scholar 

  • Maschke M, Gomez CM, Ebner TJ, Konczak J (2004) Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol 91:230–238

    Article  PubMed  Google Scholar 

  • Mazzoni P, Krakauer JW (2006) An implicit plan overrides an explicit strategy during visuomotor adaptation. J Neurosci 26:3642–3645

    Article  PubMed  CAS  Google Scholar 

  • McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38(2):339–346

    Article  PubMed  CAS  Google Scholar 

  • McFarland NR, Haber SN (2000) Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci 20(10):3798–3813

    PubMed  CAS  Google Scholar 

  • Menon M, Jensen J, Vitcu I, Graff-Guerrero A, Crawley A, Smith MA et al (2007) Temporal difference modeling of the blood-oxygen level dependent response during aversive conditioning in humans: effects of dopaminergic modulation. Biol Psychiatry 62(7):765–772

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Weir DJ, Wolpert DM, Stein JF (1993) Is the cerebellum a smith predictor? J Mot Behav 25:203–216

    Article  PubMed  CAS  Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Miall RC, Christensen LOD, Cain O, Stanley J (2007) Disruption of state estimation in the human lateral cerebellum. PLoS Biol 5:e316

    Google Scholar 

  • Miltner WHR, Braun CH, Coles MG H (1997) Event-related brain potentials following incorrect feedback in a time-estimation task: evidence for a ‘generic’ neural system for error detection. J Cogn Neurosci 9(6):788–798

    Article  Google Scholar 

  • Mink JW, Thach WT (1993) Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol 3(6):950–957

    Article  PubMed  CAS  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425

    Article  PubMed  CAS  Google Scholar 

  • Morris SE, Yee CM, Nuechterlein KH (2006) Electrophysiological analysis of error monitoring in schizophrenia. J Abnorm Psychol 115(2):239–250

    Article  PubMed  Google Scholar 

  • Morton SM, Bastian AJ (2004) Prism adaptation during walking generalizes to reaching and requires the cerebellum. J Neurophysiol 92:2497–2509

    Article  PubMed  Google Scholar 

  • Murray GK, Corlett PR, Clark L, Pessiglione M, Blackwell AD, Honey G et al (2008) Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry 13(3):239, 267–276

    Article  CAS  Google Scholar 

  • Nachev P, Rees G, Parton A, Kennard C, Husain M (2005) Volition and conflict in human medial frontal cortex. Curr Biol 15(2):122–128

    Article  PubMed  CAS  Google Scholar 

  • Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869

    Article  PubMed  CAS  Google Scholar 

  • O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan RJ (2003) Temporal difference models and reward-related learning in the human brain. Neuron 38(2):329–337

    Article  PubMed  Google Scholar 

  • Ogawa K, Inui T, Sugio T (2006) Separating brain regions involved in internally guided and visual feedback control of moving effectors: an event-related fMRI study. NeuroImage 32:1760–1770

    Article  PubMed  Google Scholar 

  • Patton JL, Stoykov ME, Kovic M, Mussa-Ivaldi FA (2006) Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp Brain Res 168:368–383

    Article  PubMed  Google Scholar 

  • Prodoehl J, Yu H, Wasson P, Corcos DM, Vaillancourt DE (2008) Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. J Neurophysiol 99(6):3042–3051

    Article  PubMed  Google Scholar 

  • Rabbitt P (1990) Age, IQ and awareness, and recall of errors. Ergonomics 33(10-11):1291–1305

    Article  PubMed  CAS  Google Scholar 

  • Rabbitt PM (1966) Errors and error correction in choice-response tasks. J Exp Psychol 71(2):264–272

    Article  PubMed  CAS  Google Scholar 

  • Ramnani N (2006) The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci 7:511–522

    Article  PubMed  CAS  Google Scholar 

  • Rangel A, Camerer C, Montague PR (2008) A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci 9(7):545–556

    Article  PubMed  CAS  Google Scholar 

  • Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306(5695):443–447

    Article  PubMed  CAS  Google Scholar 

  • Russeler J, Kuhlicke D, Munte TF (2003) Human error monitoring during implicit and explicit learning of a sensorimotor sequence. Neurosci Res 47(2):233–240

    Article  PubMed  Google Scholar 

  • Schmidt RA, Lee TD (2011) Motor control and learning: a behavioral emphasis. Human Kinetics, Champaign

    Google Scholar 

  • Schönberg T, Daw ND, Joel D, O’Doherty JP (2007) Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. J Neurosci 27(47):12860–12867

    Article  PubMed  CAS  Google Scholar 

  • Schonberg T, O’Doherty JP, Joel D, Inzelberg R, Segev Y, Daw ND (2010) Selective impairment of prediction error signaling in human dorsolateral but not ventral striatum in Parkinson’s disease patients: evidence from a model-based fMRI study. Neuroimage 49(1):772–781

    Article  PubMed  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27

    PubMed  CAS  Google Scholar 

  • Schultz W (2001) Reward signaling by dopamine neurons. Neuroscientist 7(4):293–302

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Noll DC, Thiers G (2004) Feedforward and feedback processes in motor control. NeuroImage 22:1775–1783

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J (2005) Neural correlates of encoding and expression in implicit sequence learning. Exp Brain Res 165(1):114–124

    Article  PubMed  CAS  Google Scholar 

  • Seidler RD, Noll DC, Chintalapati P (2006) Bilateral basal ganglia activation associated with sensorimotor adaptation. Exp Brain Res 175(3):544–555

    Article  PubMed  CAS  Google Scholar 

  • Seidler, RD, Bo J, Anguera JA (under review). Neurocognitive contributions to motor skill learning: the role of working memory. Invited paper for a special issue of the Journal of Motor Behavior dedicated to papers from the Neural Control of Movement Society’s 2011 satellite meeting on motor learning.

    Google Scholar 

  • Seidler RD, Benson BL, Boyden NB, Kwak Y (in press) Motor skill learning. In: Ochsner KN, Kosslyn SM (eds), Oxford handbook of cognitive neuroscience. Oxford University Press, New York

    Google Scholar 

  • Shadmehr R, Mussa-Ivaldi F (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    Google Scholar 

  • Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci 33:89–108

    Google Scholar 

  • Shima K, Mushiake H, Saito N, Tanji J (1996) Role for cells in the presupplementary motor area in updating motor plans. Proc Natl Acad Sci USA 93(16):8694–8698

    Article  PubMed  CAS  Google Scholar 

  • Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13(7):259–265

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Brandt J, Shadmehr R (2000) Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature 403(6769):544–549

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Shadmehr R (2005) Intact ability to learn internal models of arm dynamics in Huntington’s disease but not cerebellar degeneration. J Neurophysiol 93(5):2809–2821

    Article  PubMed  Google Scholar 

  • Spraker MB, Yu H, Corcos DM, Vaillancourt DE (2007) Role of individual basal ganglia nuclei in force amplitude generation. J Neurophysiol 98(2):821–834

    Article  PubMed  Google Scholar 

  • Stuphorn V, Brown JW, Schall JD (2010) Role of supplementary eye field in saccade initiation: executive, not direct, control. J Neurophysiol 103(2):801–816

    Article  PubMed  Google Scholar 

  • Synofzik M, Lindner A, Thier P (2008) The cerebellum updates predictions about the visual consequences of one’s behavior. Curr Biol 18(11):814–818

    Article  PubMed  CAS  Google Scholar 

  • Takenouchi K, Nishijo H, Uwano T, Tamura R, Takigawa M, Ono T (1999) Emotional and behavioral correlates of the anterior cingulate cortex during associative learning in rats. Neuroscience 93(4):1271–1287

    Article  PubMed  CAS  Google Scholar 

  • Taylor JA, Klemfuss NM, Ivry RB (2010) An explicit strategy prevails when the cerebellum fails to compute movement errors. Cerebellum 9:580–586

    Article  PubMed  Google Scholar 

  • Tseng Y, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ (2007) Sensory prediction errors drive cerebellum-dependent adaptation of reaching. J Neurophysiol 98:54–62

    Article  PubMed  Google Scholar 

  • Tunik E, Houk JC, Grafton ST (2009) Basal ganglia contribution to the initiation of corrective submovements. Neuroimage 47(4):1757–1766

    Article  PubMed  Google Scholar 

  • Turner RS, Grafton ST, Votaw JR, Delong MR, Hoffman JM (1998) Motor subcircuits mediating the control of movement velocity: a PET study. J Neurophysiol 80(4):2162–2176

    PubMed  CAS  Google Scholar 

  • Turner RS, Desmurget M, Grethe J, Crutcher MD, Grafton ST (2003) Motor subcircuits mediating the control of movement extent and speed. J Neurophysiol 90(6):3958–3966

    Article  PubMed  Google Scholar 

  • Vaillancourt DE, Mayka MA, Thulborn KR, Corcos DM (2004) Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. Neuroimage 23(1):175–186

    Article  PubMed  Google Scholar 

  • Valentin VV, O’Doherty JP (2009) Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain. J Neurophysiol 102(6):3384–3391

    Article  PubMed  Google Scholar 

  • Van den Bercken JH, Cools AR (1982) Evidence for a role of the caudate nucleus in the sequential organization of behavior. Behav Brain Res 4(4):319–327

    Article  PubMed  CAS  Google Scholar 

  • van der Meer MA, Redish AD (2011) Ventral striatum: a critical look at models of learning and evaluation. Curr Opin Neurobiol 21(3):387–392

    Article  PubMed  CAS  Google Scholar 

  • Wachter T, Lungu OV, Liu T, Willingham DT, Ashe J (2009) Differential effect of reward and punishment on procedural learning. J Neurosci 29(2):436–443

    Article  PubMed  CAS  Google Scholar 

  • Wei Y, Bajaj P, Scheidt R, Patton JL (2005) Visual error augmentation for enhancing motor learning and rehabilitative relearning. In: International conference on rehabilitation robotics. IEEE, Chicago, pp 505–510

    Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Exp Brain Res 103(3):460–470

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2:338–347

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachael D. Seidler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Seidler, R.D., Kwak, Y., Fling, B.W., Bernard, J.A. (2013). Neurocognitive Mechanisms of Error-Based Motor Learning. In: Richardson, M., Riley, M., Shockley, K. (eds) Progress in Motor Control. Advances in Experimental Medicine and Biology, vol 782. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5465-6_3

Download citation

Publish with us

Policies and ethics