Skip to main content

Antibody–Drug Conjugate Development

  • Chapter
  • First Online:
Book cover Antibody-Drug Conjugates and Immunotoxins

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Antibody–drug conjugate (ADC) development started about three decades ago with the hypothesis that toxins conjugated to antibodies would enhance antitumor activity and reduce toxicity by delivering toxins to specific tumor sites. Since then, the field has evolved to include potent small molecule drugs (SMD) and radiolabeled drugs conjugated to antibodies targeting both solid tumors and hematologic malignancies. Improved ADC technology has paved the way for increased drug delivery to the target tumors and decreased normal tissue exposure to cytotoxic agents. Radio-immunoconjugates (RICs) present a different set of challenges leading to unique development pathways. Several factors need to be taken into consideration when developing RICs, such as decay of radioactivity, potentially higher exposure to normal tissue caused by lower specificity, and dehalogenation leading to a loss of signal. This chapter focuses on antibodies conjugated to SMDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ducry L, Stump B (2010) Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 21(1):5–13

    Article  PubMed  CAS  Google Scholar 

  2. Barok M et al (2011) Trastuzumab-DM1 causes tumor growth inhibition by mitotic catastrophe in trastuzumab-resistant breast cancer cells in vivo. Breast Cancer Res 13(2):R46

    Article  PubMed  CAS  Google Scholar 

  3. Barok M et al (2007) Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance. Mol Cancer Ther 6(7):2065–2072

    Article  PubMed  CAS  Google Scholar 

  4. Remillard S et al (1975) Antimitotic activity of the potent tumor inhibitor maytansine. Science 189(4207):1002–1005

    Article  PubMed  CAS  Google Scholar 

  5. DiJoseph JF et al (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103(5):1807–1814

    Article  PubMed  CAS  Google Scholar 

  6. Advani A et al (2010) Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: results of a phase I study. J Clin Oncol 28(12):2085–2093

    Article  PubMed  CAS  Google Scholar 

  7. Younes A et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363(19):1812–1821

    Article  PubMed  CAS  Google Scholar 

  8. FDA (1997) Points to Consider in the Manufacture and Testing of Monoclonal Antibody Products for Human Use, CBER, Editor: Rockville; weblink last assessed January 3, 2012: http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/OtherRecommendationsforManufacturers/UCM153182.pdf

  9. FDA (2010) Guidance for Industry: ICH S9 Nonclinical Evaluation for Anticancer Pharmaceuticals. Weblink last assessed January 3, 2012: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm085389.pdf

  10. Alley SC, Okeley NM, Senter PD (2010) Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 14(4):529–537

    Article  PubMed  CAS  Google Scholar 

  11. FDA (1997) Guidance for Industry: ICH S6 Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals. Weblink last assessed January 3, 2012: http://www.fda.gov/downloads/regulatoryinformation/guidances/ucm129171.pdf

  12. FDA (1996) Guideline for Industry: ICH S2A Specific Aspects of Regulatory Genotoxicity Tests for Pharmaceuticals. Weblink last assessed January 3, 2012: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm074925.pdf

  13. Bross PF et al (2001) Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7(6):1490–1496

    PubMed  CAS  Google Scholar 

  14. Law CL et al (2004) Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates. Clin Cancer Res 10(23):7842–7851

    Article  PubMed  CAS  Google Scholar 

  15. Sutherland MS et al (2006) Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem 281(15):10540–10547

    Article  PubMed  CAS  Google Scholar 

  16. Alley SC et al (2008) Contribution of linker stability to the activities of anticancer immunoconjugates. Bioconjug Chem 19(3):759–765

    Article  PubMed  CAS  Google Scholar 

  17. Lewis Phillips GD (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68(22):9280–9290

    Article  PubMed  CAS  Google Scholar 

  18. Sanderson RJ et al (2005) In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. Clin Cancer Res 11(2 Pt 1):843–852

    PubMed  CAS  Google Scholar 

  19. Kuang B, King L, Wang HF (2010) Therapeutic monoclonal antibody concentration monitoring: free or total? Bioanalysis 2(6):1125–1140

    Article  PubMed  CAS  Google Scholar 

  20. Krop IE et al (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28(16):2698–2704

    Article  PubMed  CAS  Google Scholar 

  21. DeSilva B et al (2003) Recommendations for the bioanalytical method validation of ligand-binding assays to support pharmacokinetic assessments of macromolecules. Pharm Res 20(11):1885–1900

    Article  PubMed  CAS  Google Scholar 

  22. FDA (2001) Guidance for Industry: Bioanalytical Method Validation. Weblink last assessed January 3, 2012: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf

  23. Hamblett KJ et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10(20):7063–7070

    Article  PubMed  CAS  Google Scholar 

  24. McDonagh CF et al (2006) Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 19(7):299–307

    Article  PubMed  CAS  Google Scholar 

  25. Imanishi T, Makela O (1974) Inheritance of antibody specificity. I. Anti-(4-hydroxy-3-nitrophenyl)acetyl of the mouse primary response. J Exp Med 140(6):1498–1510

    Article  PubMed  CAS  Google Scholar 

  26. Imanishi T, Makela O (1974) Inheritance of fine-specificity in mouse anti-hapten antibodies. Ann Immunol (Paris) 125C(1–2):199–200

    CAS  Google Scholar 

  27. Bothwell AL et al (1981) Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a gamma 2a variable region. Cell 24(3):625–637

    Article  PubMed  CAS  Google Scholar 

  28. Berek C, Griffiths GM, Milstein C (1985) Molecular events during maturation of the immune response to oxazolone. Nature 316(6027):412–418

    Article  PubMed  CAS  Google Scholar 

  29. Paul WE, Siskind GW (1970) Hapten specificity of cellular immune responses as compared with the specificity of serum anti-hapten antibody. Immunology 18(6):921–930

    PubMed  CAS  Google Scholar 

  30. Yamashita U, Kitagawa M (1974) Induction of anti-hapten antibody response by hapten-isologous carrier conjugate. I. Development of hapten-reactive helper cells by hapten-isologous carrier. Cell Immunol 14(2):182–192

    Article  PubMed  CAS  Google Scholar 

  31. Harding FA et al (2010) The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs 2(3):256–265

    Article  PubMed  Google Scholar 

  32. McKoy JM et al (2008) Epoetin-associated pure red cell aplasia: past, present, and future considerations. Transfusion 48(8):1754–1762

    Article  PubMed  Google Scholar 

  33. Buttel IC et al (2011) Taking immunogenicity assessment of therapeutic proteins to the next level. Biologicals 39(2):100–109

    Article  PubMed  CAS  Google Scholar 

  34. Swann PG, Shapiro MA (2011) Regulatory considerations for development of bioanalytical assays for biotechnology products. Bioanalysis 3(6):597–603

    Article  PubMed  CAS  Google Scholar 

  35. Getts DR et al (2010) Have we overestimated the benefit of human(ized) antibodies? MAbs 2(6):682–694

    Article  PubMed  Google Scholar 

  36. FDA (2009) Guidance for Industry: Assay Development for Immunogenicity Testing of Therapeutic Proteins. Weblink last assessed January 3, 2012: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM192750.pdf

  37. FDA (2005) Guidance for Industry: Q5E Comparability of Biotechnological/Biological Products Subject to Changes in Their Manufacturing Process, CDER/CBER. Weblink last assessed January 3, 2012: http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm128076.pdf

  38. FDA (2010) Draft Guidance for Industry: Pharmacokinetics in Patients with Impaired Renal Function—Study Design, Data Analysis, and Impact on Dosing and Labeling. 2010; weblink last assessed January 3, 2012: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM204959.pdf

  39. FDA (2003) Guidance for Industry: Exposure-Response Relationships—Study Design, Data Analysis, and Regulatory Applications. Weblink last assessed January 3, 2012: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm072109.pdf

  40. FDA (1999) Guidance for Industry: Population Pharmacokinetics. Weblink last assessed January 3, 2012: http://www.fda.gov/downloads/ScienceResearch/SpecialTopics/WomensHealthResearch/UCM133184.pdf

  41. Rodriguez I et al (2010) Electrocardiographic assessment for therapeutic proteins—scientific discussion. Am Heart J 160(4):627–634

    Article  PubMed  Google Scholar 

  42. Curigliano G et al (2008) Drug-induced QTc interval prolongation: a proposal towards an efficient and safe anticancer drug development. Eur J Cancer 44(4):494–500

    Article  PubMed  CAS  Google Scholar 

  43. Rock EP et al (2009) Assessing proarrhythmic potential of drugs when optimal studies are infeasible. Am Heart J 157(5):827–836, 836.e1

    Article  PubMed  CAS  Google Scholar 

  44. Sarapa N, Britto MR (2008) Challenges of characterizing proarrhythmic risk due to QTc prolongation induced by nonadjuvant anticancer agents. Expert Opin Drug Saf 7(3):305–318

    Article  PubMed  CAS  Google Scholar 

  45. Lalonde RL, Honig P (2008) Clinical pharmacology in the era of biotherapeutics. Clin Pharmacol Ther 84(5):533–536

    Article  PubMed  CAS  Google Scholar 

  46. Mould DR, Green B (2010) Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. BioDrugs 24(1):23–39

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aakanksha Khandelwal .

Editor information

Editors and Affiliations

Additional information

Disclaimer.

The views expressed in this chapter are those of the authors and do not necessarily reflect the views of the United States Food and Drug Administration (FDA).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khandelwal, A., Saber, H., Shapiro, M.A., Zhao, H. (2013). Antibody–Drug Conjugate Development. In: Phillips, G. (eds) Antibody-Drug Conjugates and Immunotoxins. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5456-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5456-4_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5455-7

  • Online ISBN: 978-1-4614-5456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics