Skip to main content

CDX-011 (Glembatumumab Vedotin, CR011-vcMMAE)

  • Chapter
  • First Online:
Antibody-Drug Conjugates and Immunotoxins

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 2644 Accesses

Abstract

The development of monoclonal antibodies as cancer therapeutic agents has improved the outlook for many patients as evidenced by the number of such drugs that have been approved for oncologic indications [1]. Monoclonal antibodies allow selective killing of malignant cells (targeted therapy) with relative sparing of the normal tissues resulting in higher therapeutic efficacy and lower toxicity. The advances in the monoclonal antibody field have been expedited by the discovery of targets or pathways that are uniquely present or upregulated in cancer cells along with the advances in the technology used for the production of human or “humanized” reagents [2]. An additional strategy to enhance monoclonal antibody therapy is to utilize these reagents to selectively deliver radioisotopes (radioimmunotherapy) or cytotoxic agents (antibody–drug conjugates) to tumor cells [3, 4]. CDX-011 is a recently described antibody–drug conjugate in early clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reichert JM, Valge-Archer VE (2007) Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov 6:349–356

    Article  PubMed  CAS  Google Scholar 

  2. Oldham RK, Dillman RO (2008) Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol 26(11):1774–1777

    Article  PubMed  Google Scholar 

  3. Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal JF (2006) Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol 24(5):823–834

    Article  PubMed  CAS  Google Scholar 

  4. Cartwer PJ, Senter PD (2008) Antibody-drug conjugates for cancer therapy. Cancer J 14(3):154–169

    Article  Google Scholar 

  5. Tse KF, Jeffers M, Pollack VA et al (2006) CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. Clin Cancer Res 12:1373–1382

    Article  PubMed  CAS  Google Scholar 

  6. Mendez MJ, Green LL, Corvalan JR et al (1997) Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 15:146–156

    Article  PubMed  CAS  Google Scholar 

  7. Yang XD, Jia XC, Corvalan JR et al (1999) Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res 59:1236–1243

    PubMed  CAS  Google Scholar 

  8. Pettit GR, Kamano Y, Herald CL et al (1987) The isolation and structure of a remarkable marine animal antineoplastic constituent: dolastatin 10. J Am Chem Soc 109:6883–6885

    Article  CAS  Google Scholar 

  9. Francisco JA, Cerveny CG, Meyer DL et al (2003) cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102:1458–1465

    Article  PubMed  CAS  Google Scholar 

  10. Gerber HP, Kung-Sutherland M, Stone I et al (2009) Potent antitumor activity of the anti-CD19 auristatin antibody drug conjugate hBU12-vcMMAE against rituximab-sensitive and -resistant lymphomas. Blood 113:4352–4361

    Article  PubMed  CAS  Google Scholar 

  11. Rose AAN, Dong Z, MacDonald PA, Russo C, Bertos NR, Simantov R, Park M, Siegel PM. (2009) GPNMB is novel pro-angiogenic factor and therapeutic target in breast cancer. Montreal international symposium in angiogenesis and metastasis (Abstract #P21)

    Google Scholar 

  12. Sutherland MS, Sanderson RJ, Gordon KA et al (2006) Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol Chem 281:10540–10547

    Article  PubMed  CAS  Google Scholar 

  13. Doronina SO, Toki BE, Torgov MY et al (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784

    Article  PubMed  CAS  Google Scholar 

  14. Kremer H, Pinckers A, van den Helm B, Deutman AF, Ropers HH, Mariman ECM (1994) Localizaion of the gene for dominant cystoid macular dystrophy on chromosome 7p. Hum Mol Genet 3(2):299–302

    Article  PubMed  CAS  Google Scholar 

  15. Weterman MA, Ajubi N, van Dinter IM et al (1995) nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer 60:73–81

    Article  PubMed  CAS  Google Scholar 

  16. Hoashi T, Sato S, Yamaguchi Y et al (2010) Glycoprotein nonmetastatic melanoma protein b, a melanocytic cell marker, is a melanosome-specific and proteolytically released protein. FASEB J 24:1616–1629

    Article  PubMed  CAS  Google Scholar 

  17. Tomihari M, Hwang SH, Chung JS et al (2009) Gpnmb is a melanosome-associated glycoprotein that contributes to melanocyte/keratinocyte adhesion in a RGD-dependent fashion. Exp Dermatol 18:586–595

    Article  PubMed  CAS  Google Scholar 

  18. Shikano S, Bonkobara M, Zukas PK et al (2001) Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. J Biol Chem 276:8125–8134

    Article  PubMed  CAS  Google Scholar 

  19. Chung JS, Dougherty I, Cruz PD Jr et al (2007) Syndecan-4 mediates the coinhibitory function of DC-HIL on T cell activation. J Immunol 179:5778–5784

    PubMed  CAS  Google Scholar 

  20. Sheng MH, Wergedal JE, Mohan S et al (2008) Osteoactivin is a novel osteoclastic protein and plays a key role in osteoclast differentiation and activity. FEBS Lett 582:1451–1458

    Article  PubMed  CAS  Google Scholar 

  21. Abdelmagid SM, Barbe MF, Arango-Hisijara I et al (2007) Osteoactivin acts as downstream mediator of BMP-2 effects on osteoblast function. J Cell Physiol 210:26–37

    Article  PubMed  CAS  Google Scholar 

  22. Shikano S, Bonkobara M, Zukas PK, Ariizumi K (2001) Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGDdependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. J Biol Chem 276:8125–8134

    Article  PubMed  CAS  Google Scholar 

  23. Abdelmagid SM, Barbe MF, Rico MC et al (2008) Osteoactivin, an anabolic factor that regulates osteoblast differentiation and function. Exp Cell Res 314:2334–2351

    Article  PubMed  CAS  Google Scholar 

  24. Selim AA, Abdelmagid SM, Kanaan RA et al (2003) Anti-osteoactivin antibody inhibits osteoblast differentiation and function in vitro. Crit Rev Eukaryot Gene Expr 13:265–275

    Article  PubMed  CAS  Google Scholar 

  25. Ripoll VM, Meadows NA, Raggatt LJ et al (2008) Microphthalmia transcription factor regulates the expression of the novel osteoclast factor GPNMB. Gene 413:32–41

    Article  PubMed  CAS  Google Scholar 

  26. Ripoll VM, Irvine KM, Ravasi T et al (2007) Gpnmb is induced in macrophages by IFN-gamma and lipopolysaccharide and acts as a feedback regulator of proinflammatory responses. J Immunol 178:6557–6566

    PubMed  CAS  Google Scholar 

  27. Chung JS, Bonkobara M, Tomihari M et al (2009) The DC-HIL/syndecan-4 pathway inhibits human allogeneic T-cell responses. Eur J Immunol 39:965–974

    Article  PubMed  CAS  Google Scholar 

  28. Onaga M, Ido A, Hasuike S et al (2003) Osteoactivin expressed during cirrhosis development in rats fed a choline-deficient, L-amino acid-defined diet, accelerates motility of hepatoma cells. J Hepatol 39:779–785

    Article  PubMed  CAS  Google Scholar 

  29. Loging WT, Lal A, Siu IM et al (2000) Identifying potential tumor markers and antigens by database mining and rapid expression screening. Genome Res 10:1393–1402

    Article  PubMed  CAS  Google Scholar 

  30. Kuan CT, Wakiya K, Dowell JM et al (2006) Glycoprotein nonmetastatic melanoma protein B, a potential molecular therapeutic target in patients with glioblastoma multiforme. Clin Cancer Res 12:1970–1982

    Article  PubMed  CAS  Google Scholar 

  31. Rich JN, Shi Q, Hjelmeland M et al (2003) Bone-related genes expressed in advanced malignancies induce invasion and metastasis in a genetically defined human cancer model. J Biol Chem 278:15951–15957

    Article  PubMed  CAS  Google Scholar 

  32. Rose AA, Grosset AA, Dong Z et al (2010) Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res 16:2147–2156

    Article  PubMed  CAS  Google Scholar 

  33. Rose AA, Pepin F, Russo C et al (2007) Osteoactivin promotes breast cancer metastasis to bone. Mol Cancer Res 5:1001–1014

    Article  PubMed  CAS  Google Scholar 

  34. Okamoto I, Pirker C, Bilban M et al (2005) Seven novel and stable translocations associated with oncogenic gene expression in malignant melanoma. Neoplasia 7:303–311

    Article  PubMed  CAS  Google Scholar 

  35. Williams MD, Esmaeli B, Soheili A et al (2010) GPNMB expression in uveal melanoma: a potential for targeted therapy. Melanoma Res 20:184–190

    PubMed  CAS  Google Scholar 

  36. Tomihari M, Chung JS, Akiyoshi H et al (2010) DC-HIL/glycoprotein Nmb promotes growth of melanoma in mice by inhibiting the activation of tumor-reactive T cells. Cancer Res 70:5778–5787

    Article  PubMed  CAS  Google Scholar 

  37. Rose AA, Annis MG, Dong Z et al (2010) ADAM10 releases a soluble form of the GPNMB/Osteoactivin extracellular domain with angiogenic properties. PLoS One 5:e12093

    Article  PubMed  Google Scholar 

  38. Ghilardi C, Chiorino G, Dossi R et al (2008) Identification of novel vascular markers through gene expression profiling of tumor-derived endothelium. BMC Genomics 9:201

    Article  PubMed  Google Scholar 

  39. Rose AN, Grosset AA, Dong Z, Russo C, MacDonald PA, Bertos NR, St-Pierre Y, Simantov R, Hallett M, Park M, Gaboury L, Siegel PM (2010) Glycoprotein nonmetastatic B Is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res 16:2147–2156

    Article  PubMed  CAS  Google Scholar 

  40. Tomihari M, Chung JS, Akiyoshi H, Cruz PD, Ariizumi K (2010) DC-HIL/glycoprotein Nmb promotes growth of melanoma in mice by inhibiting the activation of tumor-reactive T cells. Cancer Res 70(14):5778–5787

    Article  PubMed  CAS  Google Scholar 

  41. Qian X, Mills E, Torgov M, LaRochelle WJ, Jeffers M (2008) Pharmacologically enhanced expression of GPNMB increases the sensitivity of melanoma cells to the CR011-vcMMAE antibody-drug conjugate. Mol Oncol 2:81–93

    Article  PubMed  Google Scholar 

  42. A Phase I/II Study of CR011-vcMMAE in subjects with unresectable Stage III or Stage IV melanoma (NCT00412828), 2010

    Google Scholar 

  43. A Phase I/II Study of CR011-vcMMAE in patients with locally advanced or metastatic breast cancer (NCT00704158), 2010

    Google Scholar 

  44. A Phase II, randomized, multicenter study of CDX-011 (CR011-vcMMAE) in patients with advanced GPNMB-expressing breast cancer (NCT01156753), 2010

    Google Scholar 

  45. Hamid O, Sznol M, Pavlick AC et al (2010) Frequent dosing and GPNMB expression with CDX-011 (CR011-vcMMAE), an antibody-drug conjugate (ADC), in patients with advanced melanoma. 2010 ASCO annual meeting, Chicago, IL. J Clin Oncol 28:15s (Suppl; Abstr 8525)

    Google Scholar 

  46. Saleh MN, Bendell JC, Rose A et al (2010) Correlation of GPNMB expression with outcome in breast cancer (BC) patients treated with the antibody-drug conjugate (ADC), CDX-011 (CR011-vcMMAE). 2010 ASCO annual meeting, Chicago, IL. J Clin Oncol 28:15s (Suppl; Abstr 1095)

    Google Scholar 

  47. Burris H, Saleh M, Bendell J, Hart L, Rose AAN, Dong Z, Siegel PM, Crane MF, Donovan D, Crowley E, Simantov R, Vahdat L (2010) A Phase I/II Study of CR011-vcMMAE (CDX-011), an antibody-drug conjugate, in patients with locally advanced or metastatic breast cancer. SABCS 2009 (Abstract # 6096)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Vaklavas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vaklavas, C., LoBuglio, A.F., Saleh, M., Yelin, M., Forero, A. (2013). CDX-011 (Glembatumumab Vedotin, CR011-vcMMAE). In: Phillips, G. (eds) Antibody-Drug Conjugates and Immunotoxins. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5456-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5456-4_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-5455-7

  • Online ISBN: 978-1-4614-5456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics