The Bieri–Strebel Theorems

  • Katalin A. Bencsáth
  • Marianna C. Bonanome
  • Margaret H. Dean
  • Marcos Zyman
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)


Proofs of two theorems on finitely generated groups by Bieri and Strebel are included in detail. The first theorem gives a dichotomy for finitely presented groups with an infinite cyclic quotient: such a group is either an ascending HNN-extension or else contains a free group of rank 2. An immediate consequence of the second theorem is that a solvable finitely presented group is either finite or else is virtually an ascending HNN-extension of a finitely generated solvable group.


Bieri–Strebel theorem Finitely presented solvable group Subgroup of finite index Ascending HNN-extension Infinite cyclic quotient Solvable series 


  1. 1.
    Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley, Reading (1969)MATHGoogle Scholar
  2. 2.
    Baumslag, G.: On finitely presented metabelian groups. Bull. Amer. Math. Soc. 78(2), 279 (1972)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Baumslag, G.: Subgroups of finitely presented metabelian groups. J. Austral. Math. Soc. 16, 98–110 (1973)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Baumslag, G., Cannonito, F.B., Miller, C.F., III: Infinitely generated subgroups of finitely presented groups. II. Math. Z. 172(2), 97–105 (1980)MathSciNetMATHGoogle Scholar
  5. 5.
    Baumslag, G., Cannonito, F.B., Robinson, D.J.S.: The algorithmic theory of finitely generated metabelian groups. Tran. Amer. Math. Soc. 344(2), 629–648 (1994)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Baumslag, G., Mikhailov, R., Orr, K.E.: A new look at finitely generated metabelian groups, arXiv:1203.5431v1 [math.GR] 24 Mar 2012Google Scholar
  7. 7.
    Bieri, R., Strebel, R.: Almost finitely presented soluble groups. Comment. Math. Helv. 53, 258–278 (1978)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Hall, P.: Finiteness conditions for soluble groups. Proc. London Math. Soc. 4, 419–436 (1954)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Hall, P.: On the finiteness of certain soluble groups. Proc. London Math. Soc. 3, 595–622 (1959)CrossRefGoogle Scholar
  10. 10.
    Hall, P.: The Frattini subgroups of finitely generated groups. Proc. London Math. Soc. 3, 327–352 (1961)CrossRefGoogle Scholar
  11. 11.
    Higman, G.: Subgroups of finitely presented groups. Proc. Roy. Soc. Ser. A 262, 455–475 (1961)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Krasner, M., Kaloujnine, L.: Produit complet des groupes de permutations et probleme dextension des groupes. Acta Sci. Mz. Szeged 13, 208–230 (1950); 14, 39–66 and 69–82 (1951)Google Scholar

Copyright information

© Katalin A. Bencsath, Marianna C. Bonanome, Margaret H. Dean, Marcos Zyman 2013

Authors and Affiliations

  • Katalin A. Bencsáth
    • 1
  • Marianna C. Bonanome
    • 2
  • Margaret H. Dean
    • 3
  • Marcos Zyman
    • 3
  1. 1.Department of Mathematics and Computer ScienceManhattan CollegeNew YorkUSA
  2. 2.Department of Applied Mathematics and Computer Science New York City College of TechnologyThe City University of New YorkBrooklynUSA
  3. 3.Department of Mathematics Borough of Manhattan Community CollegeThe City University of New YorkNew YorkUSA

Personalised recommendations