Skip to main content

Molecular Mechanisms of Insulin Resistance in Diabetes

  • Chapter
  • First Online:
Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 771))

Abstract

Molecular components of impaired insulin signaling pathway have emerged with growing interest to understand how the environment and genetic susceptibility combine to cause defects in this fundamental pathway that lead to insulin resistance. When insulin resistance is combined with β-cell defects in glucose-stimulated insulin secretion, impaired glucose tolerance, hyperglycemia, or Type 2 diabetes can result. The most common underlying cause is obesity, although primary insulin resistance in normal-weight individuals is also possible. The adipose tissue releases free fatty acids that contribute to insulin resistance and also acts as a relevant endocrine organ producing mediators (adipokines) that can modulate insulin signalling.

This chapter deals with the core elements promoting insulin resistance, associated with impaired insulin signalling pathway and adipocyte dysfunction. A detailed understanding of these basic pathophy siological mechanisms is critical for the development of novel therapeutic strategies to treat diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wild S, Roglic G, Green A et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27:1047–1053.

    Article  PubMed  Google Scholar 

  2. Larsen MO. Beta-cell function and mass in type 2 diabetes. Dan Med Bull 2009; 56:153–164.

    PubMed  Google Scholar 

  3. Ginsberg HN. Insulin resistance and cardiovascular disease. J Clin Invest 2000; 106:453–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McClenaghan NH. Physiological regulation of the pancreatic ta-cell: functional insights for understanding and therapy of diabetes. Exp Physiol 2007; 92:481–496.

    Article  CAS  PubMed  Google Scholar 

  5. Lorenzo C, Wagenknecht LE, D’ Agostino RB Jr. et al. Insulinresistance, beta-cell dysfunction and conversion to type 2 diabetes in a multiethnic population: the Insulin Resistance Atherosclerosis Study. Diabetes Care 2011; 33:67–72.

    Article  CAS  Google Scholar 

  6. Utzschneider KM, Van de Lagemaat A, Faulenbach MV et al. Insulin resistance is the best predictor of the metabolic syndrome in subjects with a first-degree relative with type 2 diabetes. Obesity (Silver Spring) 2011; 18:1781–1787.

    Article  CAS  Google Scholar 

  7. Kapeller R, Moriarty A, Strauss A et al. Tyrosine phosphorylation of tub and its association with Src homology 2 domain-containing proteins implicate tub in intracellular signaling by insulin. J Biol Chem 1999; 274:24980–24986.

    Article  CAS  PubMed  Google Scholar 

  8. Sato M, Ozawa T, Yoshida T et al. A fluorescent indicator for tyrosine phosphorylation-based insulin signaling pathways. Anal Chem 1999; 71:3948–3954.

    Article  CAS  PubMed  Google Scholar 

  9. Scott PH, Brunn GJ, Kohn AD et al. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci U S A 1998; 95:7772–7777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sale EM, Sale GJ. Protein kinase B: signalling roles and therapeutic targeting. Cell Mol Life Sci 2008; 65:113–127.

    Article  CAS  PubMed  Google Scholar 

  11. Farese RV, Sajan MP, Standaert ML. Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Afct): actions and defects in obesity and type II diabetes. Exp Biol Med (Maywood) 2005; 230:593–605.

    Article  CAS  Google Scholar 

  12. Sano H, Eguez L, Teruel MN et al. Rab 10, a target of the AS 160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab 2007; 5:293–303.

    Article  CAS  PubMed  Google Scholar 

  13. Sano H, Kane S, Sano E et al. Insulin-stimulated phosphorylatiou of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 2003; 278:14599–14602.

    Article  CAS  PubMed  Google Scholar 

  14. Bourdeau A, Dube N, Tremblay ML. Cytoplasmic protein tyrosine phosphatases, regulation and function: the roles of PTP1B and TC-PTP. Curr Opin Cell Biol 2005; 17:203–209.

    Article  CAS  PubMed  Google Scholar 

  15. Harley EA, Levens N. Protein tyrosine phosphatase 1B inhibitors for the treatment of type 2 diabetes and obesity: recent advances. Curr Opin Investig Drugs 2003; 4:1179–1189.

    CAS  PubMed  Google Scholar 

  16. Vereshchagina N, Ramel MC, Bitoun E et al. The protein phosphatase PP2A-B’ subunit Widerborst is a negative regulator of cytoplasmic activated Akt and lipid metabolism in Drosophila. J Cell Sci 2008; 121(Pt 20)3383–3392.

    Article  CAS  PubMed  Google Scholar 

  17. Vinciguerra M, Foti M. PTEN and SHIP2 phosphoinositide phosphatases as negative regulators of insulin signalling. Arch Physiol Biochem 2006; 112:89–104.

    Article  CAS  PubMed  Google Scholar 

  18. Sasaoka T, Wada T, Tsuneki H. Lipid phosphatases as a possible therapeutic target in cases of type 2 diabetes and obesity. Pharmacol Ther 2006; 112:799–809.

    Article  CAS  PubMed  Google Scholar 

  19. Cheatham B, Vlahos CJ, Cheatham L et al. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 1994; 14:4902–4911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Le Marchand-Brustel Y, Gautier N, Cormont M et al. Wortmannin inhibits the action of insulin but not that of okadaic acid in skeletal muscle: comparison with fat cells. Endocrinology 1995; 136:3564–3570.

    Article  Google Scholar 

  21. Kim YB, Nikoulina SE, Ciaraldi TP et al. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase. in muscle in type 2 diabetes. J Clin Invest 1999; 104:733–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frojdo S, Durand C, Molin L et al. Phosphoinositide 3-kinase as a novel functional target for the regulation of the insulin signaling pathway by SIRT1. Mol Cell Endocrinol 2011; 335:166–176.

    Article  PubMed  CAS  Google Scholar 

  23. Levy-Toledano R, Caro LH, Accili D et al. Investigation of the mechanism of the dominant negative effect of mutations in the tyrosine kinase domain of the insulin receptor. EMBO J 1994; 13:835–842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Krook A, Moller DE, Dib K et al. Two naturally occurring mutant insulin receptors phosphorylate insulin receptor substrate-1 (IRS-1) but fail to mediate the biological effects of insulin. Evidence that IRS-1 phosphorylation is not sufficient for normal insulin action. J Biol Chem 1996; 271:7134–7140.

    Article  CAS  PubMed  Google Scholar 

  25. Yamauchi T, Tobe K, Tamemoto H et al. Insulin signalling and insulin actions in the muscles and livers of insulin-resistant, insulin receptor substrate 1-deficient mice. Mol Cell Biol 1996; 16:3074-3084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Araki E, Lipes MA, Patti ME et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 1994; 372:186–190.

    Article  CAS  PubMed  Google Scholar 

  27. Kubota N, Tobe K, Terauchi Y et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 2000; 49:1880–1889.

    Article  CAS  PubMed  Google Scholar 

  28. Kido Y, Burks DJ, Withers D et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1 and IRS-2. J Clin Invest 2000; 105:199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiao LY, Goldberg JL, Russell JC et al. Identification of enhanced serine kinase activity in insulin resistance. J Biol Chem 1999; 274:10625–10632.

    Article  CAS  PubMed  Google Scholar 

  30. Qiao LY, Zhande R, Jetton TL et al. In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J Biol Chem 2002; 277:26530–26539.

    Article  CAS  PubMed  Google Scholar 

  31. Shah OJ, Wang Z, Hunter T. Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 2004; 14:1650–1656.

    Article  CAS  PubMed  Google Scholar 

  32. Yu C, Chen Y, Cline GW et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-l)-associated phosphatidylinositol 3-kinasc activity in muscle. J Biol Chem 2002; 277:50230–50236.

    Article  CAS  PubMed  Google Scholar 

  33. Cho H. Thorvaldsen JL, Chu Q et al. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 2001; 276:38349–38352.

    Article  CAS  PubMed  Google Scholar 

  34. Cho H, Mu J, Kim JK et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 2001; 292:1728–1731.

    Article  CAS  PubMed  Google Scholar 

  35. Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002; 32Suppl 3:14–23.

    Article  CAS  PubMed  Google Scholar 

  36. Itani SI, Rudennan NB, Schmieder F et al. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and Ikappa B-alpha. Diabetes 2002; 51:2005–2011.

    Article  CAS  PubMed  Google Scholar 

  37. Strack V, Stoyanov B, Bossenmaier B et al. Impact ofmutations at different serine residues on the tyrosine kinase activity of the insulin receptor. Biochem Biophys Res Commun 1997; 239:235–239.

    Article  CAS  PubMed  Google Scholar 

  38. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106:171–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sims FA, Danforth E Jr., Horton ES et al. Endocrine and metabolic effects of experimental obesity in man. Recent Prog Horra Res 1973; 29:457–496.

    CAS  Google Scholar 

  40. Freidenberg GR, Reichart D, Olefsky JM et al. Reversibility of defective adipocyte insulin receptor kinase activity in non-insulin-dependent diabetes mcllitus. Effect of weight loss. J Clin Invest 1988; 82:1398–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rhodes CJ. Type 2 diabetes-a matter of beta-cell life and death? Science 2005; 307:380–384.

    Article  CAS  PubMed  Google Scholar 

  42. Burns N, Finucane FM, Hatunic M et al. Early-onset type 2 diabetes in obese white subjects is characterised by a marked defect in beta cell insulin secretion, severe insulin resistance and a lack of response to aerobic exercise training. Diabetologia 2007; 50:1500–1508.

    Article  CAS  PubMed  Google Scholar 

  43. da Silva RC, Miranda WL, Chacra AR. et al. Insulin resistance, beta-cell function, and glucose tolerance in Brazilian adolescents with obesity or risk factors for type 2 diabetes mellitus. J Diabetes Complications 2007; 21:84–92.

    Article  PubMed  Google Scholar 

  44. Takada J, Fonseca-Alaniz MH, de Campos TB et al. Metabolic recovery of adipose tissue is associated with improvement in insulin resistance in a model of experimental diabetes. J Endocrinol 2008; 198:51–60.

    Article  CAS  PubMed  Google Scholar 

  45. Azuma K, Heilbronn LK, Albu JB et al. Adipose tissue distribution in relation to insulin resistance in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 2007; 293:E435–E442.

    Article  CAS  PubMed  Google Scholar 

  46. Basat O, Ucak S, Ozkurt H et al. Visceral adipose tissue as an indicator of insulin resistance in nonobese patients with new onset type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2006; 114:58–62.

    Article  CAS  PubMed  Google Scholar 

  47. Boden G. Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes 2003; 111:121–124.

    Article  CAS  PubMed  Google Scholar 

  48. Kashyap SR, Beifort R, Bcrria R et al. Discordant effects of a chronic physiological increase in plasma FFA on insulin signaling in healthy subjects with or without a family history of type 2 diabetes. Am J Physiol Endocrinol Metab 2004; 287:E537–E546.

    Article  CAS  PubMed  Google Scholar 

  49. Dey D, Basu D, Roy SS et al. Involvement of novel PKC isoforms in FFA induced defects in insulin signaling. Mol Cell Endocrinol 2006; 246:60–64.

    Article  CAS  PubMed  Google Scholar 

  50. Murdolo G. Smith U. The dysregulated adipose tissue: a connecting link between insulin resistance, type 2 diabetes mellitus and atherosclerosis. Nutr Metab Cardiovasc Dis 2006; 16Suppl 1:S35–S38.

    Article  PubMed  Google Scholar 

  51. Arner P. Insulin resistance in type 2 diabetes—role of the adipokines. Curr Mol Med 2005; 5:333–339.

    Article  CAS  PubMed  Google Scholar 

  52. Lee JM, Kim SR, Yoo SJ et al. The relationship between adipokines, metabolic parameters and insulin resistance in patients with metabolic syndrome and type 2 diabetes. J Int Med Res 2009; 37:1803–1812.

    Article  CAS  PubMed  Google Scholar 

  53. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 444:847–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kalderon B, Mayorek N, Berry E et al. Fatty acid cycling in the fasting rat. Am J Physiol Endocrinol Metab 2000; 279:E221–E227.

    Article  CAS  PubMed  Google Scholar 

  55. Athyros VG, Tziomalos K. Karagiannis A et al, Mikhailidis DP. Dyslipidaemia of obesity, metabolic syndrome and type 2 diabetes mellitus: the case for residual risk reduction after statin treatment. Open Cardiovasc Med J 2011; 5:24–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia 53:1270–1287.

    Google Scholar 

  57. Christiansen JL, Nicoloro S, Straubhaar J et al. Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3T3-L1 cells. J Biol Chem 2008; 283:2906–2916.

    Article  CAS  Google Scholar 

  58. Frayn KN, Shadid S, Hamlani R et al. Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. Am J Physiol 1994; 266(3 Pt l):E308–E317.

    CAS  PubMed  Google Scholar 

  59. Oakes ND, Bell KS, Furier SM et al. Diet-induced muscle insulin resistance in rats is ameliorated by acute dietary lipid withdrawal or a single bout of exercise: parallel relationship between insulin stimulation of glucose uptake and suppression of long-chain fatty acyl-CoA. Diabetes 1997; 46:2022–2028.

    Article  CAS  PubMed  Google Scholar 

  60. Szczepaniak LS, Babcock EE, Schick F et al. Measurement of intracellular triglyceride stores by H spcctroscopy: validation in vivo. Am J Physiol 1999; 276(5 Pt 1):E977–E989.

    CAS  PubMed  Google Scholar 

  61. Randle PJ. Newsholme EA, Garland PB. Regulation of glucose uptake by muscle. 8. Effects of fatty acids, ketone bodies and pyruvate and of alloxan-diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphragm muscles. Biochcm J 1964; 93:652–665.

    Article  CAS  Google Scholar 

  62. Randle PJ, Garland PB, Newsholme EA et al. The glucose fatty acid cycle in obesity and maturity onset diabetes mellitus. Ann N Y Acad Sci 1965; 131:324–333.

    Article  CAS  PubMed  Google Scholar 

  63. Lewis GF, Carpentier A, Adeli K et al. Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 2002; 23:201–229.

    Article  CAS  PubMed  Google Scholar 

  64. Schinner S, Scherbaum WA, Bomstein SR et al. Molecular mechanisms of insulin resistance. Diabet Med 2005; 22:674–682. A

    Article  CAS  PubMed  Google Scholar 

  65. White MF. IRS proteins and the common path to diabetes. Am J Physioi Endocrinol Metab 2002; 283:E413–E422.

    Article  CAS  Google Scholar 

  66. Ahima RS. Adipose tissue as an endocrine organ. Obesity (Silver Spring) 2006; 14Suppl 5:242S–249S.

    Article  CAS  Google Scholar 

  67. Gimeno RE, Klaman LD. Adipose tissue as an active endocrine organ: recent advances. Curr Opin Pharmacol 2005; 5:122–128.

    Article  CAS  PubMed  Google Scholar 

  68. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414:799–806.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Y, Proenca R, Maffei M et al. Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372:425–432.

    Article  CAS  PubMed  Google Scholar 

  70. Webber J. Energy balance in obesity. Proc Nutr Soc 2003; 62(2):539–543.

    Article  PubMed  Google Scholar 

  71. Shimomura I, Hammer RE, Ikemoto S et al. Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999; 401:73–76.

    Article  CAS  PubMed  Google Scholar 

  72. Ebihara K, Ogawa Y, Masuzaki H et al. Transgenic overexpression of leptin rescues insulin resistance and diabetes in a mouse model of lipoatrophic diabetes. Diabetes 2001; 50:1440–1448.

    Article  CAS  PubMed  Google Scholar 

  73. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998; 395:763–770.

    Article  CAS  PubMed  Google Scholar 

  74. Farooqi IS, Wangensteen T, Collins S et al. Clinical andmolecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 2007; 356:237–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Montague CT, Farooqi IS, Whitehead JP et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387:903–908.

    Article  CAS  PubMed  Google Scholar 

  76. Oral EA, Simha V, Ruiz E et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002; 346:570–578.

    Article  CAS  PubMed  Google Scholar 

  77. Shimomura I, Hammer RE, Richardson JA et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev 1998; 12:3182–3194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Okamoto M, Ohara-Imaizumi M, Kubota N et al. Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration. Diabetologia 2008; 51:827–835.

    Article  CAS  PubMed  Google Scholar 

  79. Fasshauer M, Paschke R, Stumvoll M. Adiponectin, obesity and cardiovascular disease. Biochimie 2004; 86:779–784.

    Article  CAS  PubMed  Google Scholar 

  80. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 1996; 271:10697–10703.

    Article  CAS  PubMed  Google Scholar 

  81. Kouidhi S, Jarboui S, Marrakchi R et al. Adiponectin expression and metabolic markers in obesity and Type 2 diabetes. J Endocrinol Invest 2011; 34:el6–e23.

    Article  Google Scholar 

  82. Hanley AJ, Bowden D, Wagenknecht LE et al. Associations of adiponectin with body fat distribution and insulin sensitivity in nondiabetic Hispanics and African-Americans. J Clin Endocrinol Metab 2007; 92:2665–2671.

    Article  CAS  PubMed  Google Scholar 

  83. Tschritter O, Fritsche A, Thamer C et al. Plasma adiponectin concentrations predict insulin sensitivity of both glucose and lipid metabolism. Diabetes 2003; 52:239–243.

    Article  CAS  PubMed  Google Scholar 

  84. Hivert MF, Sullivan LM, Fox CS et al. Associations of adiponectin, resistin and tumornecrosis factor-alpha with insulin resistance. J Clin Endocrinol Metab 2008; 93:3165–3172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Staiger H, Tschritter O, Machann J et al. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes Res 2003; 11:368–372.

    Article  CAS  PubMed  Google Scholar 

  86. Weyer C, Funahashi T, Tanaka S et al. Hypoadiponectiuemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Eudocrinol Metab 2001; 86:1930–1935.

    Article  CAS  Google Scholar 

  87. Wang J, Li H, Franco OH et al. Adiponectin and metabolic syndrome in middle-aged and elderly Chinese. Obesity (Silver Spring) 2008; 16:172–178.

    Article  CAS  Google Scholar 

  88. Mather KJ, Funahashi T, Matsuzawa Y et al. Adiponectiu, change in adipouectin, and progression to diabetes in the Diabetes Prevention Program. Diabetes 2008; 57:980–986.

    Article  CAS  PubMed  Google Scholar 

  89. Kubota N, Terauchi Y, Yamauchi T et al. Disruption of adiponectin causes insulin resistance and neointirnal formation. J Biol Chem 2002; 277:25863–25866.

    Article  CAS  PubMed  Google Scholar 

  90. Maeda N, Shimomura I, Kishida K et al. Diet-induced insulin resistance in mice lacking adiponectin/ ACRP30. Nat Med 2002; 8:731–737.

    Article  CAS  PubMed  Google Scholar 

  91. Kim JY, van de Wall E, Laplante M et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J Clin Invest 2007; 117:2621–2637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Menzaghi C, Trischitta V, Doria A. Genetic influences of adiponectin on insulin resistance, type 2 diabetes and cardiovascular disease. Diabetes 2007; 56:1198–1209.

    Article  CAS  PubMed  Google Scholar 

  93. Yamauchi T. Kamon J, Waki H et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001; 7:941–946.

    Article  CAS  PubMed  Google Scholar 

  94. Yang Q, Graham TE, Mody N et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436:356–362.

    Article  CAS  PubMed  Google Scholar 

  95. Aeberli I, Biebinger R, Lehmann R et al. Serum retinol-binding protein 4 concentration and its ratio to serum retinol are associated with obesity and metabolic syndrome components in children. J din Endocrinol Metab 2007; 92:4359–4365.

    Article  CAS  Google Scholar 

  96. Jia W, Wu H, Bao Y et al. Association of serum retinol-binding protein 4 and visceral adiposity in Chinese subjects with and without type 2 diabetes. J Clin Endocrinol Metab 2007; 92:3224–3229.

    Article  CAS  PubMed  Google Scholar 

  97. Stefan N, Hennige AM, Staiger H et al. High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans. Diabetes Care 2007; 30:1173–1178.

    Article  CAS  PubMed  Google Scholar 

  98. von Eynatten M, Humpert PM. Retinol-binding protein-4 in experimental and clinical metabolic disease. Expert Rev Mol Diagn 2008; 8:289–299.

    Article  Google Scholar 

  99. Gomez-Ambrosi J, Rodriguez A, Catalan V et al. Scrum retinol-binding protein 4 is not increased in obesity or obesity-associated type 2 diabetes mellitus, but is reduced after relevant reductions in body fat following gastric bypass. Clin Endocrinol (Oxf) 2008; 69:208–215.

    Article  CAS  Google Scholar 

  100. Plomgaard P, Bouzakri K, Krogh-Madsen R et al. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes 2005; 54:2939–2945.

    Article  CAS  PubMed  Google Scholar 

  101. Fang Q, Xiang K, Lu J. The mechanism of tumor necrosis factor-alpha (TNF-alpha) induced insulin resistance by variation in promoter region of TNF-alpha gene]. ZhonghuaYi Xue ZaZhi 1999; 79:343–345.

    CAS  Google Scholar 

  102. Tarkun I, Cetinarslan B, Turemen E et al. Association between Circulating Tumor Necrosis Factor-Alpha, Interleukiu-6 and Insulin Resistance in Normal-Weight Women with Polycystic Ovary Syndrome. Metab Syndr Relat Disord 2006; 4:122–128.

    Article  CAS  PubMed  Google Scholar 

  103. Uysal KT, Wiesbrock SM, Marino MW et al. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997; 389(6651):610–614.

    Article  CAS  PubMed  Google Scholar 

  104. Uysal KT, Wiesbrock SM, Hotamisligil GS. Functional analysis of tumor necrosis factor (TNF) receptors in TNF-alpha-mediated insulin resistance in genetic obesity. Endocrinology 1998; 139(12):4832–4838.

    Article  CAS  PubMed  Google Scholar 

  105. Ofei F, Hurel S, Newkirk J et al. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1996; 45(7):881–885.

    Article  PubMed  Google Scholar 

  106. Seriolo B, Ferrone C, Cutolo M. Longterm anti-tumor necrosis factor-alpha treatment in patients with refractory rheumatoid arthritis: relationship between insulin resistance and disease activity. J Rheumatol 2008; 35(2):355–357.

    CAS  PubMed  Google Scholar 

  107. Tarn LS, Tomlinson B, Chu TT et al. Impact of TNF inhibition on insulin resistance and lipids levels in patients with rheumatoid arthritis. Clin Rheumatol 2007; 26(9):1495–1498.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Soumaya, K. (2013). Molecular Mechanisms of Insulin Resistance in Diabetes. In: Ahmad, S.I. (eds) Diabetes. Advances in Experimental Medicine and Biology, vol 771. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5441-0_19

Download citation

Publish with us

Policies and ethics