Skip to main content

Cardiovascular Disease and Diabetes

  • Chapter
  • First Online:
Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 771))

Abstract

Some biochemical mechanisms are discussed which may explain the increased incidence of cardiovascular disease in diabetics compared to nondiabetic humans. Absence of insulin or insensitivity of tissues to insulin leads to hyperglycaemia and elevated plasma fatty acid concentration. Hyperglycaemia can lead to modification of protein functions which can contribute to accelerated atherosclerosis. The latter is the pathological condition which underlies most cardiovascular disease. Elevated plasma fatty acid concentration impairs insulin signalling in skeletal muscle and reduce nitric oxide production in muscle. If elevated plasma fatty acid concentrations reduce endothelial nitric oxide synthase in the artery wall then this also could contribute to the increased atherosclerosis in diabetes. Also treatment of diabetes is discussed briefly in relation to cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Fraraingham Study. Circulation 1979; 59:8–13.

    Article  CAS  Google Scholar 

  2. Kannel WB, McGcc DL. Diabetes and cardiovascular disease. Journal of the American Medical Association 1979; 241:2035–2038.

    Article  CAS  Google Scholar 

  3. Laakso M, Lehto S. Epidemiology of risk factors for cardiovascular disease in diabetes and impaired glucose tolerance. Atherosclerosis 1998; 137:S65–S73.

    Article  CAS  Google Scholar 

  4. Turner RC, Millns H, Neil HA. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study. British Medical Journal 1998; 316:823–828.

    Article  CAS  Google Scholar 

  5. Garcia MJ, McNamara PM, Gordon T et al. Morbidity and mortality in the Framingham population. Sixteen year follow-up study. Diabetes 1974; 23:105–111.

    Article  CAS  Google Scholar 

  6. Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure. Am J Cardiol 1974; 34:29–34.

    Article  CAS  Google Scholar 

  7. Natali A, Vichi S, Landi P et al. Coronary atherosclerosis in type II diabetes: angiographie findings and clinical outcomes. Diabetologia 2000; 43:632–641.

    Article  CAS  Google Scholar 

  8. DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard lecture 2009. Diabetologia 2010; 53:1270–1287.

    Article  Google Scholar 

  9. Galle J, Schneider R, Winner B et al. Glyc-oxidised LDL impair endothelial function more potently than oxidised LDL: role of enhanced oxidative stress. Atherosclerosis 1998; 138:65–77.

    Article  CAS  Google Scholar 

  10. Sobal G, Menzel J, Sinzingen H. Why is glycated LDL more sensitive to oxidation than native LDL? A comparative study. Prostaglandins, Leukotrienes and Essential Fatty Acids 2000; 63:177–186.

    Article  CAS  Google Scholar 

  11. Berliner JA, Navab M, Fogelman AM et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation and genetics. Circulation 1995; 91:2488–2496.

    Article  CAS  Google Scholar 

  12. Steinberg D. Low density lipoprotein oxidation and its pathological significance. Journal of Biological Chemistry 1997; 272:20963–20966.

    Article  CAS  Google Scholar 

  13. Lusis AJ. Atherosclerosis. Nature 2000; 407:233–241.

    Article  CAS  Google Scholar 

  14. Tabit CE, Chung WB, Hamburg NM et al. Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Dis 2010; 11:61–74.

    Article  CAS  Google Scholar 

  15. Conseutiuo F, Hishikawa K, Katusic Z et al. High glucose increases nitric oxide synthase expression and Superoxide anion generation in human aortic endothelial cells. Circulation 1997; 96:25–28.

    Article  Google Scholar 

  16. Hedrick CC, Thorpe SR, Fu MX et al. Glycation impairs high density lipoprotein function. Diabetologia 2000; 43:312–320.

    Article  CAS  Google Scholar 

  17. Nishikawa T, Edelstein D, Du XL et al. Normalising mitochondrial Superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404:787–790.

    Article  CAS  Google Scholar 

  18. Gleissner CA, Galkina E, Nadler JL et al. Mechanisms by which diabetes increases cardiovascular disease. Drag Discov Today Dis Mech 2007; 4:131–140.

    Article  Google Scholar 

  19. Gleissner CA, Sanders J, Nadler J et al. Upregulation of aldose reductase during foam cell formation as possible link among diabetes, hyperlipidaemia and atherosclerosis. Arterioscler Thromb Vasc Biol 2008; 28:1137–1143.

    Article  CAS  Google Scholar 

  20. Singh R, Barden A, Mori Tet al. Advanced glycation end products: areview. Diabetologia2001; 44:129–146.

    Article  CAS  Google Scholar 

  21. Park L, Raman KG, Lee KL. Suppression of accelerated atherosclerosis by the soluble receptor for advanced glycation end products. Nature Medicine 1998; 4:1025–1031.

    Article  CAS  Google Scholar 

  22. Samuel VT, Peterson KF, Shulman GI. Lipid-induced insulin resistance: unravelling the mechanism. The Lancet 2010; 375:2267–2277.

    Article  CAS  Google Scholar 

  23. Belfort R, Mandarino L, Kashyap S et al. Dose-response effect of elevated plasma free fatty acid on insulin signalling. Diabetes 2005; 54:1640–1648.

    Article  CAS  Google Scholar 

  24. Kashyap SR, Roman LJ, Lamont J et al. Insulin resistance is associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects. J Clin Endocrinol Metab 2005; 90:1100–1105.

    Article  CAS  Google Scholar 

  25. Li H, Li H, Bao Y et al. Free fatty acids induce endothelial dysfunction and activate protein kinase C and nuclear factor-kappaB in rat aorta. Int J Cardiol 2010, doi:10.1016/j.icard.2010.07.019.

    Google Scholar 

  26. Nathan DM, Zinman B, Cleary PA et al. Modern-day clinical course of type 1 diabetes mellitus after 30 year’s duration. Archives of Internal Medicine 2009; 169:1307–1316.

    Article  Google Scholar 

  27. Marso SP, Kennedy KF, House JA et al. The effect of intensive glucose control on all-cause and cardiovascular mortality, myocardial infarction and stroke in persons with type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes and Vascular Disease Research 2010; 7:119–130.

    Article  Google Scholar 

  28. Kurukulasuriya LR, Sowers JR. Therapies for type 2 diabetes: lowering HbA1c and associated risk factors. Cardiovascular Diabetology 2010; 9:45–58.

    Article  Google Scholar 

  29. Chaggar PS, Shaw SM, Williams SG. Thiazolidinediones and heart failure. Diabetes and Vascular Research 2009; 6:146–152.

    Article  Google Scholar 

  30. Lincoff AM, Wolski K, Nicholls SJ et al. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus. A meta-analysis of randomised trials. JAMA 2007; 298:1180–1188.

    Article  CAS  Google Scholar 

  31. Lago RM, Singh PP, Nesto RW. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 2007; 370:1129–1136.

    Article  CAS  Google Scholar 

  32. Malier VMG. Coronary atherosclerosis stabilisation: an achievable goal. Atherosclerosis 1995; 118:S91–S101.

    Article  Google Scholar 

  33. Williams KJ, Feig JE, Fisher EA. Rapid regression of atherosclerosis: insights from the clinical and experimental literature. Nature Clinical Practice Cardiovascular Medicine 2008; 5:91–102.

    Article  CAS  Google Scholar 

  34. Zhao XQ, Yuan C, Hatsukami TS et al. Effects of prolonged lipid-lowering therapy on the characteristics of carotid atherosclerotic plaques in vivo by MRI; a case-control study. Arterioscler Thromb Vasc Biol 2001; 21:1623–1629.

    Article  CAS  Google Scholar 

  35. Cohen JC, Boerwinkle E, Mosley TH et al. Sequence variations in PCSK9, low LDL and protection against coronary heart disease. New Eng J Med 2006; 354:1264–1272.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Mangiapane, H. (2013). Cardiovascular Disease and Diabetes. In: Ahmad, S.I. (eds) Diabetes. Advances in Experimental Medicine and Biology, vol 771. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5441-0_17

Download citation

Publish with us

Policies and ethics