Skip to main content

Nephropathy in Diabetes

  • Chapter
  • First Online:
Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 771))

Abstract

The most common cause of end stage renal disease (ESRD) requiring dialysis is diabetes. Both environmental and genetic factors have been postulated as the risk factors of Diabetic Nephropathy (DN). Hyperglycemia-induced metabolic and hemodynamic pathways are recognized to be mediators of kidney injury. Multiple biochemical pathways have been postulated that explain how hyperglycemia causes tissue damage: Non-enzymatic glycation that generates advanced glycation end products, activation of protein kinase C, acceleration of the polyol pathway and oxidative stress. Three major histologic pathological changes occur in DN: Mesangial expansion, GBM thickening, and glomerular sclerosis. It now seems clear in targeting a therapeutic regimen to achieve blood glucose, blood pressure and proteunuric goals, dietary protein and salt restriction, weight reduction, aggressive lipid lowering, smoking cessation and exercise. Multiple intensive interventions reduce cardiovascular events as well as nephropathy by about half when compared with conventional multifactorial treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ritz E, Stefanski A. Diabetic nephropathy in type II diabetes. Arn J Kidney Dis 1996; 27:167–194.

    Article  CAS  Google Scholar 

  2. King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates and projections. Diabetes Care 1998; 21:1414–1431.

    Article  CAS  Google Scholar 

  3. Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 1999; 341:1127–1133.

    Article  CAS  Google Scholar 

  4. Ngarmukos C, Bunnag P, Kosachunhanun N et al. Thailand diabetes registry project: prevalence, characteristics and treatment of patients with diabetic nephropathy. J Med Assoc Thai 2006; 89Suppl 1:S37–S42.

    PubMed  Google Scholar 

  5. Adler AI, Stevens RJ, Manley SE et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int 2003; 63:225–232.

    Article  Google Scholar 

  6. Consensus development conference on the diagnosis and management of nephropathy in patients with diabetes mellitus. American Diabetes Association and the National Kidney Foundation. Diabetes Care 1994; 17:1357–1361.

    Google Scholar 

  7. KDOQI Clinical Practice Guidelines and Clinical Practice Recommendations for Diabetes and Chronic Kidney Disease. Am J Kidney Dis 2007; 49:S12–S154.

    Article  Google Scholar 

  8. Mogeusen CE, Christeuseu CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 1983; 32Suppl 2:64–78.

    Article  Google Scholar 

  9. Bank N. Mechanisms of diabetic hyperfiltration. Kidney Int 1991; 40:792–807.

    Article  CAS  Google Scholar 

  10. Parving HH. Renoprotection in diabetes: genetic and nongenetic risk factors and treatment. Diabetologia 1998; 41:745–759.

    Article  CAS  Google Scholar 

  11. Rossing P. Prediction, progression and prevention of diabetic nephropathy. The Minkowski Lecture 2005. Diabetologia 2006; 49:11–19.

    Article  CAS  Google Scholar 

  12. Satirapoj B, Supasyndh O, Dispan R et al. Insulin resistance and type 2 diabetes patients in difference stage of nephropathy. Royal Thai Army Medical Journal 2009; 62:113–122.

    Google Scholar 

  13. Seaquist ER, Goetz FC, Rich S et al. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Eugl J Med 1989; 320:1161–1165.

    Article  CAS  Google Scholar 

  14. Quinn M, Angelico MC, Warrarn JH et al. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia 1996; 39:940–945.

    Article  CAS  Google Scholar 

  15. Trevisan R, Viberti G. Genetic factors in the development of diabetic nephropathy. J Lab Clin Med 1995; 126:342–349.

    CAS  PubMed  Google Scholar 

  16. Iyengar SK, Abboud HE, Goddard KA et al. Genome-wide scans for diabetic nephropathy and albuminuria in multiethnic populations: the family investigation of nephropathy and diabetes (FIND). Diabetes 2007; 56:1577–1585.

    Article  CAS  Google Scholar 

  17. Adler S, Pahl M, Abboud H et al. Mexican-American admixture mapping analyses for diabetic nephropathy in type 2 diabetes mellitus. Semin Nephrol 2010; 30:141–149.

    Article  Google Scholar 

  18. Satirapoj B. Diabetic kidney disease: important mechanisms and treatment. J Nephrol Soc Thai 2009; 15:126–139.

    Google Scholar 

  19. Satirapoj B. Review on pathophysiology and treatment of diabetic kidney disease. J Med Assoc Thai 2010; 93Suppl 6:S228–S241.

    PubMed  Google Scholar 

  20. Nagai Y, Yao L, Kobori H et al. Temporary angiotensin II blockade at the prediabetic stage attenuates the development of renal injury in type 2 diabetic rats. J Am Soc Nephrol 2005; 16:703–711.

    Article  CAS  Google Scholar 

  21. Sliarma K, Eltayeb BO, McGowan TA et al. Captopril-induced reduction of serum levels of transforming growth factor-betal correlates with long-term renoprotection in insulin-dependent diabetic patients. Am J Kidney Dis 1999; 34:818–823.

    Article  Google Scholar 

  22. Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev 2008; 4:39–45.

    Article  CAS  Google Scholar 

  23. Mishra R, Emancipator SN, Kern T et al. High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int 2005; 67:82–93.

    Article  CAS  Google Scholar 

  24. Heilig CW, Concepcion LA, Riser BL et al. Ovcrcxpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest 1995; 96:1802–1814.

    Article  CAS  Google Scholar 

  25. Dai T, Natarajan R, Nast CC et al. Glucose and diabetes: effects on podocyte and glomerular p38MAPK, heat shock protein 25, and actin cytoskeleton. Kidney International 2006; 69:806–814.

    Article  CAS  Google Scholar 

  26. Singh AK, Mo W, Dunea G et al. Effect of glycated proteins on the matrix of glomerular epithelial cells. J Am Soc Nephrol 1998; 9:802–810.

    CAS  PubMed  Google Scholar 

  27. Haneda M, Kikkawa R, Sugimoto T et al. Abnormalities in protein kinase C and MAP kinase cascade in mesangial cells cultured under high glucose conditions. J Diabetes Complications 1995; 9:246–248.

    Article  CAS  Google Scholar 

  28. Menne J, Meier M, Park JK et al. Inhibition of protein kinase C in diabetic uepliropathy—where do we stand? Nephrol Dial Transplant 2009; 24:2021–2023.

    Article  Google Scholar 

  29. Tilton RG, Chang K, Pugliese G et al. Prevention of hemodynamic and vascular albumin filtration changes in diabetic rats by aldose reductase inhibitors. Diabetes 1989; 38:1258–1270.

    Article  CAS  Google Scholar 

  30. Ha H, Hwang IA, Park JH et al. Role of reactive oxygen species in the pathogenesis of diabetic nephropathy. Diabetes Res Clin Pract 2008; 82Suppl 1:S42–S45.

    Article  CAS  Google Scholar 

  31. Dandona P, Thusu K, Cook S et al. Oxidative damage to DNA in diabetes mellitus. Lancet 1996; 347:444–445.

    Article  CAS  Google Scholar 

  32. Brezniceanu ML, Liu F, Wei CC et al. Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice. Kidney Int 2007; 71:912–923.

    Article  CAS  Google Scholar 

  33. Lee HB, Yu MR, Yang Y et al. Reactive oxygen species-regulated signalingpathways in diabetic nephropathy. J Am Soc Nephrol 2003; 14:S241–S245.

    Article  CAS  Google Scholar 

  34. Suzuki D, Miyata T, Saotome N et al. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J Am Soc Nephrol 1999; 10:822–832.

    CAS  PubMed  Google Scholar 

  35. Mauer SM. Structural-functional correlations of diabetic nephropathy. Kidney Int 1994; 45:612–622.

    Article  CAS  Google Scholar 

  36. Pagtalunan ME, Miller PL, Jumping-Eagle S et al. Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 1997; 99:342–348.

    Article  CAS  Google Scholar 

  37. Tervaert TW. Mooyaart AL. Amann Ket al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 2010; 21:556–563.

    Article  Google Scholar 

  38. Parving HH, Hommcl E, Mathicscn E et al. Prevalence of microalbuminuria, arterial hypertension, rctinopathy and neuropathy in patients with insulin dependent diabetes. Br Med J(Clin Res Ed) 1988; 296:156–160.

    Article  CAS  Google Scholar 

  39. Parving HH, Gall MA, Skott P et al. Prevalence and causes of albuminuria in non-insulin-dependent diabetic patients. Kidney Int 1992; 41:758–762.

    Article  CAS  Google Scholar 

  40. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes meliitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 1993; 329:977–986.

    Article  Google Scholar 

  41. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352:837–853.

    Article  Google Scholar 

  42. Nathan DM, Cleary PA, Backlund JY et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353:2643–2653.

    Article  Google Scholar 

  43. Holman RR, Paul SK, Bethel MA et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008; 359:1577–1589.

    Article  CAS  Google Scholar 

  44. Kawazu S, Tomono S, Shimizu M et al. The relationship between early diabetic nephropathy and control of plasma glucose in non-insulin-dcpendent diabetes mellitus. The effect of glycemic control on the development and progression of diabetic nephropathy in an 8-year follow-up study. J Diabetes Complications 1994; 8:13–17.

    Article  CAS  Google Scholar 

  45. Mulec II, Blohme G, Grande B et al. The effect of metabolic control on rate of decline in renal function in insulin-dependent diabetes mellitus with overt diabetic nephropathy. Nephrol Dial Transplant 1998; 13:651–655.

    Article  CAS  Google Scholar 

  46. Gerstein HC, Miller ME, Byington RP et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358:2545–2559.

    Article  CAS  Google Scholar 

  47. Fioretto P, Steffes MW, Sutherland DE et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med 1998; 339:69–75.

    Article  CAS  Google Scholar 

  48. Fioretto P, Sutherland DE, Najafian B et al. Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int 2006; 69:907–912.

    Article  CAS  Google Scholar 

  49. Nathan DM, Buse JB, Davidson MB et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009; 32:193–203.

    Article  CAS  Google Scholar 

  50. Zatz R, Dunn BR, Meyer TW et al. Prevention of diabetic glomcrulopathy by pharmacological amelioration of glomerular capillary hypertension. J Clin Invest 1986; 77:1925–1930.

    Article  CAS  Google Scholar 

  51. Chobanian AV, Bakris GL, Black HR et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003; 289:2560–2572.

    Article  CAS  Google Scholar 

  52. Viberti G, Mogensen CE, Groop LC et al. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. European Microalbuminuria Captopril Study Group. JAMA 1994; 271:275–279.

    Article  CAS  Google Scholar 

  53. Captopril reduces the risk of nephropathy in IDDM patients with microalbuminuria. The Microalbuminuria Captopril Study Group. Diabetologia 1996; 39:587–593.

    Article  Google Scholar 

  54. Lewis EJ, Hunsicker LG, Bain RP et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 1993; 329:1456–1462.

    Article  CAS  Google Scholar 

  55. Wilmer WA, Hebert LA, Lewis EJ et al. Remission of nephrotic syndrome in type 1 diabetes: long-term follow-up of patients in the Captopril Study. Am J Kidney Dis 1999; 34:308–314.

    Article  CAS  Google Scholar 

  56. Lewis EJ. Hunsicker LG, Clarke WR et al. Renoprotective effect oi’the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345:851–860.

    Article  CAS  Google Scholar 

  57. Brenner BM, Cooper ME, de Zeeuw D et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345:861–869.

    Article  CAS  Google Scholar 

  58. Ruggenenti P, Fassi A, Ilieva AP et al. Preventing microalbuminuria in type 2 diabetes. N Engl J Med2004; 351:1941–1951.

    Article  CAS  Google Scholar 

  59. Barnett AH, Bain SC, Bouter P et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N Engl J Med 2004; 351:1952–1961.

    Article  CAS  Google Scholar 

  60. Mogensen CE, Neldam S, Tikkanen I et al. Randomised controlled trial of dual blockade of renin-angiotensin system in patients with hypertension, microalbuminuria, and non-insulin dependent diabetes: the caudesartan and lisinopril microalbuminuria (CALM) study. BMJ 2000; 321:1440–1444.

    Article  CAS  Google Scholar 

  61. Jacobsen P, Andersen S, Rossing K et al. Dual blockade of the renin-angiotensin system versus maximal recommended dose of ACE inhibition in diabetic nephropathy. Kidney Int 2003; 63:1874–1880.

    Article  CAS  Google Scholar 

  62. Mann JF. Schmieder RE, McQueen M et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 2008; 372:547–553.

    Article  CAS  Google Scholar 

  63. Kramer AB. van der Meulen EF, Hamming I et al. Effect of combining ACE inhibition with aldosterone blockade on proteinuria and renal damage in experimental nephrosis. Kidney Int 2007; 71:417–424.

    Article  CAS  Google Scholar 

  64. Rossing K, Schjoedt KJ, Smidt UM et al. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care 2005; 28:2106–2112.

    Article  CAS  Google Scholar 

  65. Schjoedt KJ, Rossing K, Juhl TR et al. Beneficial impact of spirouolactone in diabetic nephropathy. Kidney Int 2005; 68:2829–2836.

    Article  CAS  Google Scholar 

  66. van den Meiracker AH, Baggen RG, Pauli S et al. Spironolactone in type 2 diabetic nephropathy: Effects on proteinuria, blood pressure and renal function. J Hypertens 2006; 24:2285–2292.

    Article  Google Scholar 

  67. Bianchi S, Bigazzi R, Campese VM. Antagonists of aldosterone and proteinuria in patients with CKD: an uncontrolled pilot study. Am J Kidney Dis 2005; 46:45–51.

    Article  CAS  Google Scholar 

  68. Agarwal R. Effects of statins on renal function. Mayo Clin Proc 2007; 82:1381–1390.

    Article  CAS  Google Scholar 

  69. Douglas K, O’Malley PG, Jackson JL. Meta-analysis: the effect of statins on albuminuria. Ann Intern Med 2006; 145:117–124.

    Article  CAS  Google Scholar 

  70. Zeller K, Whittaker E, Sullivan L et al. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med 1991; 324:78–84.

    Article  CAS  Google Scholar 

  71. Walker JD, Bending JJ, Dodds RA et al. Restriction of dietary protein and progression of renal failure in diabetic nephropathy. Lancet 1989; 2:1411–1415.

    Article  CAS  Google Scholar 

  72. Hansen HP, Tauber-Lassen E, Jensen BR et al. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int 2002; 62:220–228.

    Article  Google Scholar 

  73. Vogt L, Waanders F, Boomsma F et al. Effects of dietary sodium andhydrochlorothiazide on the antiproteinuric efficacy of losartan. J Am Soc Nephrol 2008; 19:999–1007.

    Article  CAS  Google Scholar 

  74. Bakris GL, Smith A. Effects of sodium intake on albumin excretion in patients with diabetic nephropathy treated with long-acting calcium antagonists. Ann Intern Med 1996; 125:201–204.

    Article  CAS  Google Scholar 

  75. Houlihan CA, Allen TJ, Baxter AL et al. A low-sodium diet potentiates the effects of losartau in type 2 diabetes. Diabetes Care 2002; 25:663–671.

    Article  CAS  Google Scholar 

  76. Esnault VL, Ekhlas A, Delcroix C et al. Diuretic and enhanced sodium restriction results in improved antiproteinuric response to RAS blocking agents. J Am Soc Nephrol 2005; 16:474–481.

    Article  CAS  Google Scholar 

  77. de Boer IH, Sibley SD, Kesteubaum B et al. Central obesity, incident microalbuminuria and change in creatininc clearance in the epidemiology of diabetes interventions and complications study. J Am Soc Nephrol 2007; 18:235–243.

    Article  Google Scholar 

  78. Morales E, Valero MA, Leon M et al. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis 2003; 41:319–327.

    Article  Google Scholar 

  79. Gaede P, Lund-Andersen H, Parving HH et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med 2008; 358:580–591.

    Article  CAS  Google Scholar 

  80. Gaede P, Vedel P, Larsen N et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003; 348:383–393.

    Article  Google Scholar 

  81. Goh SY, Jasik M, Cooper ME. Agents in development for the treatment of diabetic nephropathy. Expert Opin Emerg Drags 2008; 13:447–463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Satirapoj, B. (2013). Nephropathy in Diabetes. In: Ahmad, S.I. (eds) Diabetes. Advances in Experimental Medicine and Biology, vol 771. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5441-0_11

Download citation

Publish with us

Policies and ethics