Skip to main content
Book cover

Diabetes pp 88–106Cite as

Retinopathy in Diabetes

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 771))

Abstract

With the incidence, and prevalence of diabetes mellitus increasing worldwide, diabetic retinopathy is expected to reach epidemic proportions. The aim of this chapter is to introduce diabetic retinopathy, a leading cause of blindness in people of the working age. The clinical course of retinopathy, anatomical changes, its pathogenesis and current treatment are described, followed by an overview of the emerging drug therapies for the potential treatment of this sight-threatening complication of diabetes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang Y, Fawzi A, Tan O et al. Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography. Opt Express 2009; 17(5):4061–4073.

    Article  CAS  PubMed  Google Scholar 

  2. abramoff MD, Niemeijer M, Russell SR. Automated detection of diabetic retinopathy: barriers to translation into clinical practice. Expert rev Med Devices 2010; 7(2):287–296.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wilkinson CP, Ferris FL, 3rd, KLein RE et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. ophthalmology 2003; 110(9): 1677–1682.

    Article  CAS  PubMed  Google Scholar 

  4. Patel V, Rassam S, Newsom R et al. Retinal blood flow in diabetic retinopathy.BMJ 1992;305(6855):678–683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. cogan DG, toussaint D, kuwabara T. retinal vascular patterns. IV. Diabetic retinopathy. arch ophthalmol 1961; 66:366–378.

    Article  CAS  PubMed  Google Scholar 

  6. addison Dj, Garner a, ashton N. Degeneration of intramural pericytes in diabetic retinopathy. Br Med J 1970; 1(5691):264-266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sato Y, Kamata A, Matsui M. Clinical study of venous abnormalities in diabetic retinopathy. Jpn J Ophthalmol 1993; 37(2): 136–142.

    CAS  PubMed  Google Scholar 

  8. McLeod D, Marshall J, Kohner EM et al. the role of axoplasmic transport in the pathogenesis of retinal cotton-wool spots. Br J ophthalmol 1977; 61(3):177–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klein R, Klein BE, Moss SE et al. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. arch Ophthalmol 1984; 102(4):527–532.

    Article  CAS  PubMed  Google Scholar 

  10. Klein R, Klein BE, Moss SE et al. The Wisconsin epidemiologic study of diabetic retinopathy. H Prevalence and risk of diabetic retinopathy when age at diagnosis is less than 30 years. Arch ophthalmol 1984; 102(4):520–526.

    Article  CAS  PubMed  Google Scholar 

  11. Bresnick GH, De Venecia G, Myers FL et al. retinal ischemia in diabetic retinopathy. arch ophthalmol 1975;93(12):1300–1310.

    Article  CAS  PubMed  Google Scholar 

  12. Fong DS, Aiello LP, Ferris FL 3rd et al. Diabetic retinopathy. Diabetes care 2004; 27(10):2540–2553.

    Article  PubMed  Google Scholar 

  13. Malone JI, Morrison AD, Pavan PR et al. Prevalence and significance of retinopathy in subj ects with type 1 diabetes of less than 5 years’ duration screened for the diabetes control and complications trial. Diabetes care 2001; 24(3):522–526.

    Article  CAS  PubMed  Google Scholar 

  14. Roy MS, Klein R, O’colmain BJ et al. the prevalence of diabetic retinopathy among adult type 1 diabetic persons in the united States. Arch Ophthalmol 2004; 122(4):546–551.

    Article  PubMed  Google Scholar 

  15. Klein R, Klein BE, Moss SE et al. The Wisconsin Epidemiologic Study of Diabetic retinopathy. XV. the long-term incidence of macular edema. ophthalmology 1995; 102(1):7–16.

    Article  CAS  PubMed  Google Scholar 

  16. Klein BE, Moss SE, Kleinr R. Is menarche associated with diabetic retinopathy? Diabetes care 1990; 13(10):1034–1038.

    Article  CAS  PubMed  Google Scholar 

  17. Klein BE, Moss SE, Klein R. Effect of pregnancy on progression of diabetic retinopathy. Diabetes care 1990; 13(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  18. Effect of pregnancy on microvascular complications in the diabetes control and complications trial. The Diabetes control and complications trial research Group. Diabetescare 2000; 23(8):1084–1091.

    Google Scholar 

  19. Warpeha KM, Chakravarthy U. Molecular genetics of microvascular disease in diabetic retinopathy. Eye (lond)2003; 17(3):305–311.

    Article  CAS  Google Scholar 

  20. Patel S, Chen H, Tinkham NH et al. Genetic susceptibility of diabetic retinopathy. curr Diab rep 2008; 8(4):257–262.

    Article  CAS  PubMed  Google Scholar 

  21. Kohner EM. The evolution and natural history of diabetic retinopathy. Int ophthalmol clin 1978; 18(4): 1–16.

    CAS  PubMed  Google Scholar 

  22. Kohner EM, Sleightholm M. Does microaneurysm count reflect severity of early diabetic retinopathy? ophthalmology 1986; 93(5):586–589.

    Article  CAS  PubMed  Google Scholar 

  23. Frank RN. On the pathogenesis of diabetic retinopathy. Ophthalmology 1984; 91(6):626–634.

    Article  CAS  PubMed  Google Scholar 

  24. Stitt AW, Gardiner TA, Archer DB. Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients. Br J ophthalmol 1995; 79(4):362–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 1996; 97(12):2883–2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hammes HP, Lin J, Renner O et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 2002; 51(10):3107–3112.

    Article  CAS  PubMed  Google Scholar 

  27. Orlidge A, D’amore PA. Inhibition of capillary endothelial cell growth by pericytes and smooth muscle cells. J Cell Biol 1987; 105(3):1455–1462.

    Article  CAS  PubMed  Google Scholar 

  28. Hellstedt T, Immonen I. Disappearance and formation rates of microaneurysms in early diabetic retinopathy. Br J ophthalmol 1996; 80(2): 135–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ashton N. Studies of the retinal capillaries in relation to diabetic and other retinopathies. Br J ophthalmol 1963; 47:521–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kohner EM, Henkind P. Correlation of fluorescein angiogram and retinal digest in diabetic retinopathy. Am J Ophthalmol 1970; 69(3):403–414.

    Article  CAS  PubMed  Google Scholar 

  31. Ljubimov AV, Burgeson RE, Butkowski RJ et al. Basement membrane abnormalities in human eyes with diabetic retinopathy. J histochem cytochem 1996; 44(12):1469–1479.

    Article  CAS  PubMed  Google Scholar 

  32. Form DM, Pratt BM, Madri JA. Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components. lab Invest 1986; 55(5):521–530.

    CAS  PubMed  Google Scholar 

  33. Ingber DE, folkman J. How does extracellular matrix control capillary morphogenesis? cell 1989; 58(5):803–805.

    Article  CAS  PubMed  Google Scholar 

  34. Folkman J, Klagsbrun M, Sasse J et al. A heparin-binding angiogenic protein-basic fibroblast growth factor-is stored within basement membrane. Am J Pathol 1988; 130(2):393–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hanneken A, de JuanE, Jr.,Lutty GA et al. Altered distribution of basic fibroblast growth factor in diabetic retinopathy. Arch Ophthalmol 1991; 109(7):1005–1011.

    Article  CAS  PubMed  Google Scholar 

  36. Vigny M, Ollier-Hartmann MP, Lavigne M et al. Specific binding of basic fibroblast growth factor to basement membrane-like structures and to purified heparan sulfate proteoglycan of the EHS tumor. J Cell Physiol 1988; 137(2):321–328.

    Article  CAS  PubMed  Google Scholar 

  37. Roy S, Ha J, Trudeau K et al. Vascular basement membrane thickening in diabetic retinopathy. Curr Eye Res 2010; 35(12): 1045–1056.

    Article  PubMed  Google Scholar 

  38. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329:977–986.

    Article  Google Scholar 

  39. UKPDS. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment andrisk of complications in patients with type2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet 1998; 352(9131):837–853.

    Article  Google Scholar 

  40. Ceriello a. The possible role of postprandial hyperglycaemia in the pathogenesis of diabetic complications. Diabetologia 2003; 46(Suppl 1):M9–16.

    Article  CAS  PubMed  Google Scholar 

  41. Gabbay KH. Hyperglycemia, polyol metabolism and complications of diabetes mellitus. Annu rev Med 1975; 26:521–536.

    Article  CAS  PubMed  Google Scholar 

  42. Obrosova GI, Kador PF. Aldose reductase/polyol inhibitors for diabetic retinopathy. Curr Pharm Biotechnol 2011; 12(3):373–385.

    Article  CAS  PubMed  Google Scholar 

  43. Amano S, Yamagishi S, Koda Y et al. Polymorphisms of sorbitol dehydrogenase (SDH) gene and susceptibility to diabetic retinopathy. Med hypotheses 2003; 60(4):550–551.

    Article  CAS  PubMed  Google Scholar 

  44. Comer GM,Ciulla TA. Pharmacotherapyfordiabeticretinopathy.Curr Opin Ophthalmo l2004;15(6):508–518.

    Google Scholar 

  45. Ishida S, Usui T, Yamashiro K et al. VEGF164 is proinflammatory in the diabetic retina. Invest Ophthalmol Vis Sci 2003; 44(5):2155–2162.

    Article  PubMed  Google Scholar 

  46. Zhang XL, Wen L, Chen YJ et al. Vascular endothelial growth factor up-regulates the expression of intracellular adhesion molecule-1 in retinal endothelial cells via reactive oxygen species, but not nitric oxide. Chin Med J (Engl) 2009; 122(3):338–343.

    CAS  Google Scholar 

  47. Nagpala PG, Malik AB, Vuong PT et al. Protein kinase C beta 1 overexpression augments phorbol ester-induced increase in endothelial permeability. J Cell Physiol 1996; 166(2):249–255

    Article  CAS  PubMed  Google Scholar 

  48. Geraldes, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res 2010; 106:1319–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sjolie AK, Chaturvedi N. The retinal renin-angiotensin system: implications for therapy in diabetic retinopathy. Journal of human hypertension 2002; 16(Suppl 3):S42–46.

    Article  CAS  PubMed  Google Scholar 

  50. UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998; 317:703–713.

    Article  PubMed Central  Google Scholar 

  51. Stitt AW. AGEs and diabetic retinopathy. Invest Ophthalmol Vis Sci 2010; 51(10):4867–4874.

    Article  PubMed  Google Scholar 

  52. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ res 2010; 107(9): 1058–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pemp B, Polska E, Garhofer G et al. Retinal blood flow in type 1 diabetic patients with no or mild diabetic retinopathy during euglycemic clamp. Diabetes care 2010; 33(9):2038–2042.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Burgansky-Eliash Z, Nelson DA, Bar-Tal OP et al. Reduced retinal blood flow velocity in diabetic retinopathy. Retina 2010; 30(5):765–773.

    Article  PubMed  Google Scholar 

  55. Bursell SE, Clermont AC, Kinsley BT et al. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci 1996; 37(5):886–897.

    CAS  PubMed  Google Scholar 

  56. Adamis AP. Is diabetic retinopathy an inflammatory disease? Br J Ophthalmol 2002; 86(4):363–365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion and neovascularization in diabetic retinopathy. Am J Pathol 1991; 139(1):81–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lutty GA, Cao J, McLeod DS. Relationship of polymorphonuclear leukocytes to capillary dropout in the human diabetic choroid. Am J Pathol 1997; 151(3):707–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chibber R, Ben-Mahmud BM, Coppini D et al. Activity of the glycosylating enzyme, core 2 GlcNAc (beta1, 6) transferase, is higher in polymorphonuclear leukocytes from diabetic patients compared with age-matched control subjects: relevance to capillary occlusion in diabetic retinopathy. Diabetes 2000; 49(10): 1724–1730.

    Article  CAS  PubMed  Google Scholar 

  60. Chibber R, Ben-Mahmud BM, Mann GE et al. Protein kinase C beta2-dependent phosphorylation of core 2 GlcNAc-T promotes leukocyte-endothelial cell adhesion: a mechanism underlying capillary occlusion in diabetic retinopathy. Diabetes 2003; 52(6):1519–1527.

    Article  CAS  PubMed  Google Scholar 

  61. Chibber R, Ben-Mahmud BM, Chibber S et al. Leukocytes in diabetic retinopathy. Curr Diabetes Rev 2007; 3(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  62. Niki T, Muraoka K, Shimizu K. Distribution of capillary nonperfusion in early-stage diabetic retinopathy. Ophthalmology 1984; 91(12):1431–1439.

    Article  CAS  PubMed  Google Scholar 

  63. Shimizu K, Muraoka K. Diabetic retinopathy. Is it a maculopathy? A super-wide fluorescein angiographic evaluation. Dev ophthalmol 1981; 2:235–242.

    Article  CAS  PubMed  Google Scholar 

  64. UKPDS Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications inpatients with type2diabetes (UKPDS 33). Lancet 1998;352:837–854.

    Article  Google Scholar 

  65. White NH, Sun W, Cleary PA et al. Prolonged effect of intensive therapy on the risk of retinopathy complications inpatients with type 1 diabetes mellitus: 10yearsafterthe Diabetes Controland complications trial. Arch Ophthalmol 2008; 126(12):1707–1715.

    Article  PubMed  Google Scholar 

  66. White NH, Sun W, Cleary Pa et al. Effect of prior intensive therapy in type 1 diabetes on 10-yearprogression ofretinopathy in theDCCT/EDIC: comparison ofadults and adolescents. Diabetes 2010;59(5):1244–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Early worsening of diabetic retinopathy in the Diabetes Control and Complications trial. Arch Ophthalmol 1998;116(7):874–886.

    Google Scholar 

  68. Suzuma I, Hata Y, Clermont A et al. Cyclic stretch and hypertension induce retinal expression of vascular endothelial growth factor and vascular endothelial growth factor receptor-2: potential mechanisms for exacerbation of diabetic retinopathy by hypertension. Diabetes 2001; 50(2):444–454.

    Article  CAS  PubMed  Google Scholar 

  69. Gallego PH, Craig ME, Hing S et al. Role of blood pressure in development of early retinopathy in adolescents with type 1 diabetes: prospective cohort study. BMJ 2008; 337. a918.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Klein R, Knudtson MD, Lee KE et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology 2009; 116(3):497–503.

    Article  PubMed  Google Scholar 

  71. Chew EY, Klein ML, Ferris FL 3rd et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early treatment Diabetic retinopathy Study (ETDRS) Report 22. Arch Ophthalmol 1996; 114(9):1079–1084.

    Article  CAS  PubMed  Google Scholar 

  72. van Leiden HA, Dekker JM, Moll AC et al. Bloodpressure, lipids and obesity are associated with retinopathy: the hoorn study. Diabetes care 2002; 25(8):1320–1325.

    Article  PubMed  Google Scholar 

  73. Keech AC, Mitchell P, Summanen PA et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet 2007; 370(9600):1687–1697.

    Article  CAS  PubMed  Google Scholar 

  74. Gordon B, Chang S, Kavanagh M et al. The effects of lipid lowering on diabetic retinopathy. Am J Ophthalmol 1991; 112(4):385–391.

    Article  CAS  PubMed  Google Scholar 

  75. Gupta A, Gupta V, Thapar S et al. Lipid-lowering drug atorvastatin as an adjunct in the management of diabetic macular edema. Am J Ophthalmol 2004; 137(4):675–682.

    CAS  PubMed  Google Scholar 

  76. Sen K, Misra A, Kumar A et al. Simvastatin retards progression ofretinopathy in diabetic patients with hypercholesterolemia. Diabetes Res Clin Pract 2002; 56(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  77. Photocoagulation treatment of proliferative diabetic retinopathy: the second report of diabetic retinopathy study findings. Ophthalmology 1978; 85(l):82–106.

    Google Scholar 

  78. Treatment techniques and clinical guidelines for photocoagulation of diabetic macular edema. Early Treatment Diabetic Retinopathy Study report Number 2. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1987; 94(7):761–774.

    Article  Google Scholar 

  79. Sivaprasad S, Elagouz M, Mchugh D et al. Micropulsed diode laser therapy: evolution and clinical applications. Surv Ophthalmol 2010; 55(6):516–530.

    Article  PubMed  Google Scholar 

  80. Muqit MM, Gray JC, Marcellino GR et al. Barely visible 10-millisecond pascal laser photocoagulation for diabetic macular edema: observations of clinical effect and burn localization. Am J Ophthalmol 2010; 149(6):ai]979–986e972.

    Article  PubMed  Google Scholar 

  81. Casson RJ, Raymond G,Newland HS et al. A pilot, prospective randomised clinical trial of anew nanopulse retinal laser versus convential photocoagulation for the treatment of diabetic macular edema. In: be:ARVO; Fort_Lauderdale, 2010.

    Google Scholar 

  82. Spraul CW, Grossniklaus HE. Vitreous hemorrhage. Surv Ophthalmol 1997; 42(1):3–39.

    Article  CAS  PubMed  Google Scholar 

  83. Early vitrectomy for severe vitreous hemorrhage in diabetic retinopathy. four-year results of a randomized trial: Diabetic retinopathy Vitrectomy Study report 5. Arch Ophthalmol 1990; 108(7):958–964.

    Google Scholar 

  84. Obrosova IG, Minchenko AG, Vasupuram R et al. Aldose reductase inhibitor fidarestat prevents retinal oxidative stress and vascular endothelial growth factor overexpression in streptozotocin-diabetic rats. Diabetes 2003; 52(3): 864–871.

    Article  CAS  PubMed  Google Scholar 

  85. Oates PJ, Mylari BL. Aldose reductase inhibitors: therapeutic implications for diabetic complications. Expert opin Investig Drugs 1999; 8(12):2095–2119.

    Article  CAS  PubMed  Google Scholar 

  86. Sun W, Oates PJ, Coutcher JB et al. A selective aldose reductase inhibitor of a new structural class prevents or reverses early retinal abnormalities in experimental diabetic retinopathy. Diabetes 2006; 55(10):2757–2762.

    Article  CAS  PubMed  Google Scholar 

  87. Ishii H, Jirousek MR, Koya Det al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 1996;272(5262):728–731.

    Article  CAS  PubMed  Google Scholar 

  88. Aiello LP, Bursell SE, Clermont A et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 1997; 46(9):1473–1480.

    Article  CAS  PubMed  Google Scholar 

  89. Danis RP, Bingaman DP, Jirousek M et al. Inhibition of intraocular neovascularization caused by retinal ischemia in pigs by PKCbeta inhibition with LY333531. Invest Ophthalmol Vis Sci 1998; 39(1):171–179.

    CAS  PubMed  Google Scholar 

  90. The effect of ruboxistaurin on visual loss in patients with moderately severe to very severe nonproliferative diabetic retinopathy: initial results of the Protein kinase C beta Inhibitor Diabetic retinopathy Study (Pkc-DrS) multicenter randomized clinical trial. Diabetes 2005; 54(7):2188–2197.

    Google Scholar 

  91. Davis MD, Sheetz MJ, Aiello LP et al. PKC-DRS2 Study Group. Effect of ruboxistaurin on the visual acuity decline associated with long-standing diabetic macular edema. Invest Ophthalmol Vis Sci. 2009; 50(1): 1–4.

    Article  PubMed  Google Scholar 

  92. Effect of ruboxistaurin in patients with diabetic macular edema: thirty-month results of the randomized PkC-DMES clinical trial. Arch Ophthalmol 2007; 125(3):318–324.

    Google Scholar 

  93. Cunningham ETJr., Adamis AP, Altaweel M et al. Aphase II randomized double-masked trial of pegaptanib, an anti-vascular endothelial growth factor aptamer, for diabetic macular edema. Ophthalmology 2005; 112(10):1747–1757.

    Article  PubMed  Google Scholar 

  94. Adamis AP, Altaweel M, Bressler NM et al. Changes in retinal neovascularization after pegaptanib (Macugen) therapy in diabetic individuals. Ophthalmology 2006; 113(1):23–28.

    Article  PubMed  Google Scholar 

  95. Chun DW, Heier JS, Topping TM et al. A pilot study of multiple intravitreal injections of ranibizumab in patients with center-involving clinically significant diabetic macular edema. Ophthalmology 2006; 113(10):1706–1712.

    Article  PubMed  Google Scholar 

  96. Avery RL, Pearlman J, Pieramici DJ et al. Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy. Ophthalmology 2006; 113(10):1695 e1691–1615.

    Article  Google Scholar 

  97. Jorge R, Costa RA, Calucci D et al. Intravitreal bevacizumab (Avastin) for persistent new vessels in diabetic retinopathy (IBEPE study). Retina 2006; 26(9):1006–1013.

    Article  PubMed  Google Scholar 

  98. Zhang J, Hu LM, Xu G et al. Anti-VEGF effects of intravitreal erythropoietin in early diabetic retinopathy. Front Biosci (Elite Ed). 2010; 1;2:912–27.

    Google Scholar 

  99. Nguyen QD, Shah SM, Browning DJ et al. A phase I study of intravitreal vascular endothelial growth factor trap-eye in patients with neovascular age-related macular degeneration. ophthalmology 2009; 116(11):2141–2148e2141.

    Article  PubMed  Google Scholar 

  100. Do DV, Nguyen QD, Shah SM et al. An exploratory study of the safety, tolerability and bioactivity of a single intravitreal injection of vascular endothelial growth factor trap-Eye in patients with diabetic macular oedema. Br J ophthalmol 2009; 93(2):144–149

    Article  CAS  PubMed  Google Scholar 

  101. Saint-Geniez M, Maharaj AS, Walshe TE et al. Endogenous VEGF is required for visual function: evidence for a survival role on müller cells and photoreceptors. PLoS One. 2008; 3(11):e3554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Chaturvedi N, Porta M, Klein R et al. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type 1 diabetes: randomised, placebo-controlled trials. Lancet 2008; 372(9647):1394–1402.

    Article  CAS  PubMed  Google Scholar 

  103. Sjolie AK, Klein R, Porta M et al. Effect of candesartan on progression and regression of retinopathy in type 2diabetes(DIRECT-Protect2):arandomisedplacebo-controlled trial. Lancet2008;372(9647):1385–1393.

    Article  PubMed  CAS  Google Scholar 

  104. Effects of aspirin treatment on diabetic retinopathy. ETDRS report number 8. Early treatment Diabetic Retinopathy Study Research Group. Ophthalmology 1991; 98(5 Suppl):757–765.

    Google Scholar 

  105. Brooks HL, Jr., Caballero S, Jr., Newell CK et al. Vitreous levels of vascular endothelial growth factor and stromal-derived factor 1 in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcinolone. Arch Ophthalmol 2004; 122(12): 1801–1807.

    Article  CAS  PubMed  Google Scholar 

  106. Gillies MC, Sutter FK, Simpson JM et al. Intravitreal triamcinolone for refractory diabetic macular edema: two-year results of a double-masked, placebo-controlled, randomized clinical trial. Ophthalmology 2006; 113(9):1533–1538.

    Article  PubMed  Google Scholar 

  107. Jaffe GJ, Martin D, Callanan D et al. Fluocinolone acetonide implant (retisert) for noninfectious posterior uveitis: thirty-four-week results of a multicenter randomized clinical study. Ophthalmology 2006; 113(6):1020–1027.

    Article  PubMed  Google Scholar 

  108. Haller Ja, Kuppermann BD, Blumenkranz MS et al. Randomized controlled trial of an intravitreous dexamethasone drug delivery system in patients with diabetic macular edema. Arch Ophthalmol 2010; 128(3):289–296.

    Article  CAS  PubMed  Google Scholar 

  109. Schwartz SG, Flynn HW, Jr. Fluocinolone acetonide implantable device for diabetic retinopathy. Curr Pharm Biotechnol 2011; 12(3):347–351.

    Article  CAS  PubMed  Google Scholar 

  110. Sfikakis PP, Grigoropoulos V, Emfietzoglou I et al. Infliximab for diabetic macular edema refractory to laser photocoagulation: a randomized, double-blind, placebo-controlled, crossover, 32-week study. Diabetes care 2010; 33(7):1523–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang J, Ibrahim M, Turkcuoglu P et al. Intercellular adhesion molecule inhibitors as potential therapy for refractory uveitic macular edema. Ocul Immunol Inflamm 2010; 18(5):395–398.

    Article  PubMed  Google Scholar 

  112. Rao VR, Prescott E, Shelke NB et al. Delivery of Sar 1118 to the retina via ophthalmic drops and its effectiveness in a rat streptozotocin (STZ) model of diabetic retinopathy (DR). Invest ophthalmol Vis Sci 2010; 51(10):5198–5204.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Weiwei Z, Hu R. Targeting carbonic anhydrase to treat diabetic retinopathy: emerging evidences and encouraging results. Biochem Biophys Res commun 2009; 390(3):368–371.

    Article  PubMed  CAS  Google Scholar 

  114. Trese MT. Enzymatic-assisted vitrectomy. Eye (lond) 2002; 16(4):365–368.

    Article  CAS  Google Scholar 

  115. Gandorfer A. Enzymatic vitreous disruption. Eye (Lond) 2008; 22(10): 1273–1277.

    Article  CAS  Google Scholar 

  116. Gremizzi C, Vergani A, Paloschi V et al. Impact of pancreas transplantation on type 1 diabetes-related complications. Curr Opin Organ Transplant 2010; 15(1):119–123.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Chibber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Tarr, J.M., Kaul, K., Wolanska, K., Kohner, E.M., Chibber, R. (2013). Retinopathy in Diabetes. In: Ahmad, S.I. (eds) Diabetes. Advances in Experimental Medicine and Biology, vol 771. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5441-0_10

Download citation

Publish with us

Policies and ethics