Skip to main content

Selective Neurodegeneration, Neuropathology and Symptom Profiles in Huntington’s Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB))

Abstract

Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disease caused by a CAG repeat expansion in exon 1 of the Huntington gene (HD) also known as IT15. Despite thedisease being caused by dysfunctionofasingle gene, expressed as an expanded polyglutamine in the huntingtin protein, there is a major variability in the symptom profile of patients with Huntington’s disease as well as great variability in the neuropathology. The symptoms vary throughout the course of the disease and vary greatly between cases. These symptoms present as varying degrees of involuntary movements, mood, personality changes, cognitive changes and dementia. To determine whether there is a morphological basis for this symptom variability, recent studies have investigated the cellular andneurochemical changes in the striatum and cerebral cortex in the human brain to determine whether there is a link between the pathology in these regions and the symptomatology shown by individual cases. These studies together revealed that cases showing mainly mood symptom profiles correlatedwithmarked degeneration in the striosomal compartment of the striatum, or in the anterior cingulate gyrus of the cerebral cortex. In contrast, in cases with mainly motor symptoms neurodegeneration was especially marked in the primary motor cortex with variable degeneration in both the striosomes and matrix compartments of the striatum. These studies suggest that the variable degeneration of the striatum and cerebral cortex correlates with the variable profiles of Huntington’s disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Illarioshkin SN, Igarashi S, Onodera O et al. Trinucleotide repeat length and rate of progression of Huntington’s disease. Ann Neurol 1994; 36(4):630–635.

    Article  CAS  PubMed  Google Scholar 

  2. Sharp AH, Ross CA. Neurobiology of Huntington’s disease. Neurobiol Dis 1996; 3(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  3. Andrew SE, Goldberg YP, Kremer B et al. The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 1993; 4(4):398–403.

    Article  CAS  PubMed  Google Scholar 

  4. Claes S, Van Zand K, Legius E et al. Correlations between triplet repeat expansion and clinical features in Huntington’s disease. Arch Neurol 1995; 52(8):749–753.

    Article  CAS  PubMed  Google Scholar 

  5. Brandt J, Butters N. The neuropsychology of Huntington’s disease. TINS 1986:118–120.

    Article  Google Scholar 

  6. Folstein SE. Huntington’s Disease: A Disorder of Families.Baltimore: John’s Hopkins University Press; 1989.

    Google Scholar 

  7. Myers RH, Sax DS, Koroshetz WJ et al. Factors associated with slow progression in Huntington’s disease. Arch Neurol 1991; 48(8):800–804.

    Article  CAS  PubMed  Google Scholar 

  8. Thompson JC, Snowden JS, Craufurd D et al. Behavior in Huntington’ s disease: dissociating cognition-based and mood-based changes. J Neuropsychiatry Clin Neurosci 2002; 14(1):37–43.

    Article  PubMed  Google Scholar 

  9. Zappacosta B, Monza D, Meoni C et al. Psychiatric symptoms do not correlate with cognitive decline, motor symptoms, or CAG repeat length in Huntington’s disease. Arch Neurol 1996; 53(6):493–497.

    Article  CAS  PubMed  Google Scholar 

  10. Georgiou N, Bradshaw JL, Chiu E et al. Differential clinical and motor control function in a pair of monozygotic twins with Huntington’s disease. Mov Disord 1999; 14(2):320–325.

    Article  CAS  PubMed  Google Scholar 

  11. Wexler NS, Lorimer J, Porter J et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. PNAS 2004; 101(10):3498–3503.

    Article  CAS  PubMed  Google Scholar 

  12. MacMillan JC, Snell RG, Tyler A et al. Molecular analysis and clinical correlations of the Huntington’s disease mutation. Lancet 1993; 342(8877):954–958.

    Article  CAS  PubMed  Google Scholar 

  13. Telenius H, Kremer B, Goldberg YP et al. Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet 1994; 6(4):409–414.

    Article  CAS  PubMed  Google Scholar 

  14. Witjes-Ane MN, Zwinderman AH, Tibben A et al. Behavioural complaints in participants who underwent predictive testing for Huntington’s disease. J Med Genet 2002; 39(11):857–862.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Di Maio L, Squitieri F, Napolitano G et al. Onset symptoms in 510 patients with Huntington’s disease. J Med Genet 1993; 30(4):289–292.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vonsattel JP, Myers RH, Stevens TJ et al. Neuropathological classification of Huntington’s disease. J Neuropath Exp Neurol 1985; 44:559–577.

    Article  CAS  PubMed  Google Scholar 

  17. Vonsattel JPG, Difiglia M. Huntington-disease. J Neuropath and Exp Neurol 1998; 57(5):369–384.

    Article  CAS  Google Scholar 

  18. Albin RL, Makowiec RL, Hollingsworth ZR et al. Excitatory amino acid binding sites in the basal ganglia of the rat: a quantitative autoradiographic study. Neuroscience 1992; 46:35–48.

    Article  CAS  PubMed  Google Scholar 

  19. Deng YP, Albin RL, Penney JB et al. Differential loss of striatal projection systems in Huntington’s disease: a quantitative immunohistochemical study. J Chem Neuroanat 2004; 27(3):143–164.

    Article  CAS  PubMed  Google Scholar 

  20. Faull RL, Waldvogel HJ, Nicholson LF et al. The distribution of GABAA-benzodiazepine receptors in the basal ganglia in Huntington’s disease and in the quinolinic acid-lesioned rat. Prog Brain Res 1993; 99:105–123.

    Article  CAS  PubMed  Google Scholar 

  21. Glass M, Dragunow M, Faull RLM. The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 2000; 97(3):505–519.

    Article  CAS  PubMed  Google Scholar 

  22. Glass M, Failli RL, Dragunow M. Loss of cannabinoid receptors in the substantia nigra in Huntington’s disease. Neuroscience 1993; 56(3):523–527.

    Article  CAS  PubMed  Google Scholar 

  23. Reiner A, Albin RL, Anderson KD et al. Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci USA 1988; 85(15):5733–5737.

    Article  CAS  PubMed  Google Scholar 

  24. Ferrante RJ, Kowall NW, Beal MF et al. Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease. J Neuropathol Exp Neurol 1987; 46(1):12–27.

    Article  CAS  PubMed  Google Scholar 

  25. Vonsattel JP, Ge P, Kelly L. Huntington’s disease. In: Esiri M, Morris JH, editors. The Neuropathology of Dementia. Cambridge: Cambridge University Press UK; 1997:219–240.

    Google Scholar 

  26. Allen KL, Waldvogel HJ, Glass M et al. Cannabinoid (CB(1)), GABA(A) and GABA(B) receptor subunit changes in the globus pallidus in Huntington’s disease. J Chem Neuroanat 2009; 37(4):266–281.

    Article  CAS  PubMed  Google Scholar 

  27. Graybiel AM, Ragsdale CW Jr. Histochemically distinct compartments in the striatum of human, monkeys and cat demonstrated by acetylthiocho linesterase staining. Proc Nat Acad Sci USA 1978; 75(11):5723–5726.

    Article  CAS  PubMed  Google Scholar 

  28. Holt DJ, Graybiel AM, Saper CB. Neurochemical architecture of the human striatum. J Comp Neurol 1997; 384:1–25.

    Article  CAS  PubMed  Google Scholar 

  29. Waldvogel HJ, Faull RLM. Compartmentalization of parvalbumin immunoreactivity in the human striatum. Brain Res 1993; 610:311–316.

    Article  CAS  PubMed  Google Scholar 

  30. Eblen F, Graybiel AM. Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 1995; 15(9):5999–6013.

    Article  CAS  PubMed  Google Scholar 

  31. Gerfen CR. The neostriatal mosaic: multiple levels of compartmental organization. TINS 1992; 15:133–138.

    CAS  PubMed  Google Scholar 

  32. Saka E, Goodrich C, Harlan P et al. Repetitive behaviors in monkeys are linked to specific striatal activation patterns. J Neurosci 2004; 24(34):7557–7565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. White NM, Hiroi N. Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proc Natl Acad Sci USA 1998; 95(11):6486–6491.

    Article  CAS  PubMed  Google Scholar 

  34. Hedreen JC, Folstein SE. Early loss of neostriatal striosome neurons in Huntington’s disease. JNeuropathol Exp Neurol 1995; 54(1): 105–120.

    Article  CAS  Google Scholar 

  35. Morton AJ, Nicholson LF, Faull RL. Compartmental loss of NADPH diaphorase in the neuropil of the human striatum in Huntington’s disease. Neuroscience 1993; 53(1): 159–168.

    Article  CAS  PubMed  Google Scholar 

  36. Seto-Ohshima A, Emson PC, Lawson E et al. Loss of matrix calcium-binding protein-containing neurons in Huntington’s disease. Lancet 1988; 1234:1252–1254.

    Article  Google Scholar 

  37. Olsen JM, Penney JB, Shoulson I et al. Inhomogeneities of striatal receptor binding in Huntington’s disease. Neurology 1986; 36:342.

    Google Scholar 

  38. Augood SJ, Faull RL, Love DR et al. Reduction in enkephalin and substance P messenger RNA in the striatum of early grade Huntington’s disease: a det alled cellular in situ hybridization study. Neuroscience 1996; 72(4): 1023–1036.

    Article  CAS  PubMed  Google Scholar 

  39. Tippett LJ, Waldvogel HJ, Thomas SJ et al. Striosomes and mood dysfunction in Huntington’s disease. Brain 2007; 130(Pt 1):206–221.

    Article  PubMed  Google Scholar 

  40. Alexopoulos GS, Gunning-Dixon FM, Latoussakis V et al. Anterior cingulate dysfunction in geriatric depression. Int J Geriatr Psychiatry 2008; 23(4):347–355.

    Article  PubMed  Google Scholar 

  41. Davidson RJ, Pizzagalli D, Nitschke JB et al. Depression: perspectives from affective neuroscience. Annu Rev Psychol 2002; 53:545–574.

    Article  PubMed  Google Scholar 

  42. Ebert D, Ebmeier KP. The role of the cingulate gyrus in depression: from functional anatomy to neurochemistry. Biol Psychiatry 1996; 39(12):1044–1050.

    Article  CAS  PubMed  Google Scholar 

  43. Harrison PJ. The neuropathology of primary mood disorder. Brain 2002; 125(Pt 7):1428–1449.

    Article  PubMed  Google Scholar 

  44. Konarski JZ, McIntyre RS, Kennedy SH et al. Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord 2008; 10(1): 1–37.

    Article  PubMed  Google Scholar 

  45. Thu DC, Oorschot DE, Tippett LJ et al. Cell loss in the motor and cingulate cortex correlates with symptomatology in Huntington’s disease. Brain 2010; 133(Pt 4):1094–1110.

    Article  PubMed  Google Scholar 

  46. Cudkowicz M, Kowall NW. Degeneration of pyramidal projection neurons in Huntington’s disease cortex. Ann Neurol 1990; 27:200–204.

    Article  CAS  PubMed  Google Scholar 

  47. Hedreen JC, Peyser CE, Folstein SE et al. Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neurosci Lett 1991; 133(2):257–261.

    Article  CAS  PubMed  Google Scholar 

  48. Heinsen H, Strik M, Bauer M et al. Cortical and striatal neurone number in Huntington’s disease. Acta Neuropathol 1994; 88(4):320–333.

    Article  CAS  PubMed  Google Scholar 

  49. Macdonald V, Halliday G. Pyramidal cell loss in motor cortices in Huntington’s disease. Neurobiol Dis 2002; 10(3):378–386.

    Article  PubMed  Google Scholar 

  50. Macdonald V, Halliday GM, Trent RJ et al. Significant loss of pyramidal neurons in the angular gyrus of patients with Huntington’s disease. Neuropathol Appl Neurobiol 1997; 23(6):492–495.

    Article  CAS  PubMed  Google Scholar 

  51. Selemon LD, Rajkowska G, Goldman-Rakic PS. Evidence for progression in frontal cortical pathology in late-stage Huntington’s disease. J Comp Neurol 2004; 468(2): 190–204.

    Article  PubMed  Google Scholar 

  52. Rosas HD, Feigin AS, Hersch SM. Using advances in neuroimaging to detect, understand and monitor disease progression in Huntington’s disease. NeuroRx 2004; l(2):263–272.

    Article  Google Scholar 

  53. Rosas HD, Hevelone ND, Zaleta AK et al. Regional cortical thinning in preclinical Huntington disease and its relationship to cognition. Neurology 2005; 65(5):745–747.

    Article  CAS  PubMed  Google Scholar 

  54. Rosas HD, Koroshetz WJ, Chen YI et al. Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric analysis. Neurology 2003; 60(10): 1615–1620.

    Article  CAS  PubMed  Google Scholar 

  55. Rosas HD, Liu AK, Hersch S et al. Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 2002; 58(5):695–701.

    Article  CAS  PubMed  Google Scholar 

  56. Rosas HD, Salat DH, Lee SY et al. Cerebral cortex and the clinical expression of Huntington’s disease: complexity and heterogeneity. Brain 2008; 131(Pt 4): 1057–1068.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hodges A, Strand AD, Aragaki AK et al. Regional and cellular gene expression changes in human Huntington’s disease brain. Hum Mol Genet 2006; 15(6):965–977.

    Article  CAS  PubMed  Google Scholar 

  58. Luthi-Carter R, Strand A, Peters NL et al. Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Hum Mol Genet 2000; 9(9):1259–1271.

    Article  CAS  PubMed  Google Scholar 

  59. Cattaneo E, Rigamonti D, Goffredo D et al. Loss of normal huntingtin function: new developments in Huntington’s disease research. Trends Neurosci 2001; 24(3):182–188.

    Article  CAS  PubMed  Google Scholar 

  60. Cha JH. Transcriptional dysregulation in Huntington’s disease. Trends Neurosci 2000; 23(9):387–392.

    Article  CAS  PubMed  Google Scholar 

  61. Morton AJ, Faull RL, Edwardson JM. Abnormalities in the synaptic vesicle fusion machinery in Huntington’s disease. Brain Res Bull 2001; 56(2):111–117.

    Article  CAS  PubMed  Google Scholar 

  62. Petersen A, Mani K, Brundin P. Recent advances on the pathogenesis of Huntington’s disease. Exp Neurol 1999; 157(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  63. Rosas HD, Salat DH, Lee SY et al. Complexity and heterogeneity: what drives the ever-changing brain in Huntington’s disease? Ann N Y Acad Sci 2008; 1147:196–205.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zuccato C, Cattaneo E. Role of brain-derived neurotrophic factor in Huntington’s disease. Prog Neurobiol 2007; 81(5–6):294–330.

    Article  CAS  PubMed  Google Scholar 

  65. Cepeda C, Wu N, Andre VM et al. The corticostriatal pathway in Huntington’s disease. Prog Neurobiol 2007; 81(5–6):253–271.

    Article  CAS  PubMed  Google Scholar 

  66. Strand AD, Baquet ZC, Aragaki AK et al. Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. J Neurosci 2007;27(43):11758–11768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Molyneaux BJ, Arlotta P, Menezes JR et al. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007; 8(6):427–437.

    Article  CAS  PubMed  Google Scholar 

  68. Cummings DM, Andre VM, Uzgil BO et al. Alterations in cortical excitation and inhibition in genetic mouse models of Huntington’s disease. J Neurosci 2009; 29(33): 10371–10386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Andre VM, Cepeda C, Venegas A et al. Altered cortical glutamate receptor function in the R6/2 model of Huntington’s disease. J Neurophysiol 2006; 95(4):2108–2119.

    Article  CAS  PubMed  Google Scholar 

  70. Laforet GA, Sapp E, Chase K et al. Changes in cortical and striatal neurons predict behavioral and electrophysiological abnormalities in a transgenic murine model of Huntington’s disease. J Neurosci 2001;21(23):9112–9123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sapp E, Schwarz C, Chase K et al. Huntingtin localization in brains of normal and Huntington’s disease patients. Ann Neurol 1997; 42(4):604–612.

    Article  CAS  PubMed  Google Scholar 

  72. Gu X, Andre VM, Cepeda C et al. Pathological cell-cell interactions are necessary for striatal pathogenesis in a conditional mouse model of Huntington’s disease. Mol Neurodegener 2007; 2:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Gu X, Li C, Wei W et al. Pathological cell-cell interactions elicited by a neuropathogenic form of mutant Huntingtin contribute to cortical pathogenesis in HD mice. Neuron 2005; 46(3):433–444.

    Article  CAS  PubMed  Google Scholar 

  74. Spampanato J, Gu X, Yang XW et al. Progressive synaptic pathology of motor cortical neurons in a BAC transgenic mouse model of Huntington’s disease. Neuroscience 2008; 157(3):606–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Van Roon-Mom WM, Hogg VM, Tippett LJ et al. Aggregate distribution in frontal and motor cortex in Huntington’s disease brain. Neuroreport 2006; 17(6):667–670.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry J. Waldvogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Waldvogel, H.J., Thu, D., Hogg, V., Tippett, L., Faull, R.L.M. (2012). Selective Neurodegeneration, Neuropathology and Symptom Profiles in Huntington’s Disease. In: Hannan, A.J. (eds) Tandem Repeat Polymorphisms. Advances in Experimental Medicine and Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5434-2_9

Download citation

Publish with us

Policies and ethics